Tính:
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{20}\right)\)
Tính :
\(\left[\frac{1}{100}-1^2\right].\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right].\left[\frac{1}{100}-\left(\frac{1}{3}\right)^2\right]...\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)
Tính:
\(\left[\frac{1}{100}-1^2\right].\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right].\left[\frac{1}{100}-\left(\frac{1}{3}\right)^2\right].....\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)
Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)
Áp dụng , đặt biểu thức cần tính là A , ta có :
\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)
\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)
Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0
làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc
ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)
=>biểu thức ấy =0
Nguyễn Thiều Công Thành Ừ , tại mình quên không để ý :)
Tính:
\(\left(\frac{\left(6-4\frac{1}{2}\right):0,03}{\left(3\frac{1}{20}-2,65\right).4+\frac{2}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right).\frac{1}{80}}\right):\frac{49}{60}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{n+1}\right)\left(n\in N\right)\)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+.......+\frac{1}{20}\left(1+2+3+4....+20\right)\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)
Tính : \(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+..+20\right)\)
tính B= \(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{20}.\left(1+2+..+20\right)\)
\(\Rightarrow B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+....+\frac{1}{20}.\frac{\left(1+20\right).20}{2}\)
\(\Rightarrow B=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+...+\frac{1}{20}.\frac{21.20}{2}\)
\(\Rightarrow B=1+\frac{1}{2}.3+\frac{4}{2}+...+\frac{21}{2}\)
\(\Rightarrow B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)
\(\Rightarrow B=\frac{2+3+4+...+21}{2}=...\)
Good Clever
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}\cdot\frac{2\cdot3}{2}+\frac{1}{3}\cdot\frac{3\cdot4}{2}+...+\frac{1}{20}\cdot\frac{20\cdot21}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{1+2+3+....+21}{2}-\frac{1}{2}\)
\(=\frac{21\cdot22}{2}\cdot\frac{1}{2}-\frac{1}{2}\)
\(=\frac{1}{2}\left(\frac{21\cdot22}{2}-1\right)\)
\(=230\cdot\frac{1}{2}\)
Bí
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{19}\right).\left(1-\frac{1}{20}\right)\)
tính nhanh
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...........\left(1-\frac{1}{19}\right).\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.............\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2.3...........18.19}{2.3.4...................19.20}=\frac{1.\left(2.3.4..........18.19\right)}{\left(2.3.............19\right).20}=\frac{1}{20}\)
Tính
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2018}\right)\)
b) \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{190}\right)\)
c) \(\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)...\left(1+\frac{7}{2009}\right)\)
a) =\(\frac{1}{2}.\frac{2}{3}.....\frac{2017}{2018}=\frac{1.2.....2017}{2.3.4.....2018}=\frac{1}{2018}\)
Tính
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2018}\right)\)
b) \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{190}\right)\)
c) \(\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)...\left(1+\frac{7}{2009}\right)\)
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}.\frac{2}{3}...\frac{2017}{2018}\)
\(=\frac{1.2...2017}{2.3...2018}\)
\(=\frac{1}{2018}\)
b) \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{190}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{189}{190}\)
\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{378}{380}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{7.4}{5.6}...\frac{18.21}{19.20}\)
\(=\frac{\left(1.2.3...18\right).\left(4.5.6...21\right)}{\left(2.3.4...19\right).\left(3.4.5...20\right)}\)
\(=\frac{1.21}{19.3}\)
\(=\frac{21}{57}\)
c) \(\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)...\left(1+\frac{7}{2009}\right)\)
\(=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}.\frac{56}{48}...\frac{2016}{2009}\)
mk ko bít làm câu c ! xin lỗi bn nha! bn tự nghĩ cách làm câu c giúp mk nhé!
Tính \(B=\frac{1}{2\left(1+2\right)}+\frac{1}{3\left(1+2+3\right)}+\frac{1}{4\left(1+2+3+4\right)}+...+\frac{1}{20\left(1+2+3+...+20\right)}\)