Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
just kara
Xem chi tiết
Nguyễn Thị Diệu Châui
10 tháng 10 2017 lúc 20:18

345,345678

Lê Hiển Vinh
Xem chi tiết
Hoàng Lê Bảo Ngọc
8 tháng 8 2016 lúc 10:02

Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)

Áp dụng , đặt biểu thức cần tính là A , ta có : 

\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)

\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)

Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0

Nguyễn Thiều Công Thành
8 tháng 8 2016 lúc 16:33

làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc

ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)

=>biểu thức ấy =0

Hoàng Lê Bảo Ngọc
8 tháng 8 2016 lúc 17:01

Nguyễn Thiều Công Thành Ừ , tại mình quên không để ý :)

Ngô Huy Hiếu
Xem chi tiết
Hoàng Diệu Nhi
Xem chi tiết
Thanh Tùng DZ
4 tháng 7 2017 lúc 17:37

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)

\(=\frac{1}{n+1}\)

\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

\(=\frac{2+3+4+5+...+21}{2}=115\)

azzz
Xem chi tiết
Trương Ngọc Ánh
Xem chi tiết
Kiên-Messi-8A-Boy2k6
16 tháng 1 2019 lúc 18:14

\(\Rightarrow B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+....+\frac{1}{20}.\frac{\left(1+20\right).20}{2}\)

\(\Rightarrow B=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+...+\frac{1}{20}.\frac{21.20}{2}\)

\(\Rightarrow B=1+\frac{1}{2}.3+\frac{4}{2}+...+\frac{21}{2}\)

\(\Rightarrow B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)

\(\Rightarrow B=\frac{2+3+4+...+21}{2}=...\)

Good Clever

zZz Cool Kid_new zZz
16 tháng 1 2019 lúc 18:30

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}\cdot\frac{2\cdot3}{2}+\frac{1}{3}\cdot\frac{3\cdot4}{2}+...+\frac{1}{20}\cdot\frac{20\cdot21}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

\(=\frac{1+2+3+....+21}{2}-\frac{1}{2}\)

\(=\frac{21\cdot22}{2}\cdot\frac{1}{2}-\frac{1}{2}\)

\(=\frac{1}{2}\left(\frac{21\cdot22}{2}-1\right)\)

\(=230\cdot\frac{1}{2}\)

Anh Quỳnh
Xem chi tiết
Hoàng Phúc
11 tháng 5 2016 lúc 20:38

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...........\left(1-\frac{1}{19}\right).\left(1-\frac{1}{20}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.............\frac{18}{19}.\frac{19}{20}\)

\(=\frac{1.2.3...........18.19}{2.3.4...................19.20}=\frac{1.\left(2.3.4..........18.19\right)}{\left(2.3.............19\right).20}=\frac{1}{20}\)

Bui Dinh Quang
Xem chi tiết
bímậtnhé
7 tháng 4 2018 lúc 16:23

a) =\(\frac{1}{2}.\frac{2}{3}.....\frac{2017}{2018}=\frac{1.2.....2017}{2.3.4.....2018}=\frac{1}{2018}\)

Bui Dinh Quang
Xem chi tiết
I don
9 tháng 4 2018 lúc 17:37

a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}.\frac{2}{3}...\frac{2017}{2018}\)

\(=\frac{1.2...2017}{2.3...2018}\)

\(=\frac{1}{2018}\)

b) \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{190}\right)\)

\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{189}{190}\)

\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{378}{380}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{7.4}{5.6}...\frac{18.21}{19.20}\)

\(=\frac{\left(1.2.3...18\right).\left(4.5.6...21\right)}{\left(2.3.4...19\right).\left(3.4.5...20\right)}\)

\(=\frac{1.21}{19.3}\)

\(=\frac{21}{57}\)

c) \(\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)...\left(1+\frac{7}{2009}\right)\)

\(=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}.\frac{56}{48}...\frac{2016}{2009}\)

mk ko bít làm câu c ! xin lỗi bn nha! bn tự nghĩ cách làm câu c giúp mk nhé!

Lê Thị Quỳnh
Xem chi tiết