giải hệ sau: \(\begin{cases}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17\end{cases}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm m để hệ có nghiệm:
\(\hept{\begin{cases}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17+m\end{cases}}\)
giup mk nha mk tick cho. mk dag can gap
Giải hệ
a. \(\begin{cases} x^2 - 3xy+y^2=-1\\ 3x^2-xy+3y^2=13 \end{cases} \)
b.\(\begin{cases} x^2-3xy+y^2=3\\ x^2 + 2xy - 2y^2 = 6 \end{cases} \)
a) HPT đã cho tương đương:
\(\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\-\left(3x^2-xy+3y^2\right)=13\left(x^2-3xy+y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\16x^2+16y^2-40xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\8\left(2x-y\right)\left(x-2y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\left(1\right)\\\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\end{matrix}\right.\)
+) Nếu 2x = y thì thay vào (1) ta có \(x^2-6x^2+4x^2=-1\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\).
Với x = 1 thì y = 2. Với x = -1 thì y = -2.
+) Nếu x = 2y thì thay vào (1) ta có \(4y^2-6xy+y^2=-1\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\).
Với y = 1 thì x = 2. Với y = -1 thì x = 2.
Vậy....
Giải hệ pt sau :
\(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)
Cầm máy tính ra giải là xong
???????????????????????????????
Ta có hệ pt: \(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)
\(\Leftrightarrow9-2=x^2+2xy+3y^2-2x^2-2xy-y^2\)
\(\Leftrightarrow-x^2+2y^2=7\)
Đến đây thì tịt rồi hihi( mình mới lớp 8)
giải hệ phương trình
\(\hept{\begin{cases}\left(x-y\right)^2\left(3x^2+2xy+3y^2-20\right)+1=0\\2x^2-5x-2xy+5y=0\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\\y^2+xy+3y+1=0\end{cases}}\)
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)
Lấy pt (1)+2*pt (2) ta được:
\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)
Nếu \(x+2y+1=0\Rightarrow x=-2y-1\)thay vào (2) ta được:\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)
Nếu \(x+2y+2=0\Rightarrow x=-2y-2\) thay vào (2) ta được:\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)
Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)
nhân chéo 2 vế sẽ thành hpt đẳng cấp
\(2\left(x^2+2xy+3y^2\right)=9\left(2x^2+2xy+y^2\right)\)
\(\Leftrightarrow2x^2+4xy+6y^2=18x^2+18xy+9y^2\)
\(\Leftrightarrow16x^2+14xy+3y^2=0\)
\(\Leftrightarrow\left(8x+3y\right)\left(2x+y\right)=0\)
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
hãy dùng cái đầu bạn nhé :))))
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
109ubbbbbbbhy3333333333333
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Dùng cái đầu đi ạ
Bài 1: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+32y^2=9y^4=\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{cases}}\)
Bài 2: Giải hệ phương trình:
\(\hept{\begin{cases}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{cases}}\)
Bài 3: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{cases}}\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!