Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Girl
17 tháng 3 2018 lúc 17:48

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Rightarrow ad+ad+bc=bc+ad+bc\)

\(\Rightarrow2ad+bc=2bc+ad\)

\(\Rightarrow ab+2ad+bc+2cd=ab+2bc+ad+2cd\)

\(\Rightarrow a\left(b+2d\right)+c\left(b+2d\right)=b\left(a+2c\right)+d\left(a+2c\right)\)

\(\Rightarrow\left(a+c\right)\left(b+2d\right)=\left(a+2c\right)\left(b+d\right)\rightarrowđpcm\)

Love Phương Forever
17 tháng 3 2018 lúc 17:10

DỄ MÀ

(a+2c)(b+d)=ab+ad+2bc+2cd

(a+c)(b+2d)=ab+2ad+bc+2cd

Vì a/b=c/d nên ad=bc

suy ra đpcm

bon
26 tháng 1 2022 lúc 21:29

sao ko chứng minh ikhaha

Minh Nhật
Xem chi tiết
Vũ Minh Tuấn
26 tháng 12 2019 lúc 18:01

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).

Có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Nguyễn Viết Thông
18 tháng 2 2022 lúc 21:54

gianroi

Long Vũ
Xem chi tiết
Long Vũ
12 tháng 3 2016 lúc 21:54

mk trả lời như thế này có đúng không các bạn góp ý nhé

vì a/b=c/d = \(\frac{a+c}{b+d}\left(1\right)\)

ta lại có:

a/b=c/d=\(\frac{a+2c}{2d}=\frac{a+2c}{b+2d}\left(2\right)\)

từ 1 và 2 ta có:

=>(a+2c).(b+d)=(a+c).(b+2d)

Nahayumi Hana
12 tháng 3 2016 lúc 21:57

đúng rồi đó bạn
k cho mình ?

Long Vũ
12 tháng 3 2016 lúc 21:58

mk nói các bạn góp ý thôi mà 

Long Vũ
Xem chi tiết
Lee Min Hoo
13 tháng 4 2016 lúc 20:28

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

Lee Min Hoo
13 tháng 4 2016 lúc 20:28

(a^2+b^2)/(c^2+d^2)=ab/cd 
<=>(a^2+b^2)cd=(c^2+d^2)ab 
<=>a^2cd+b^2cd=abc^2+abd^2 
<=>a^2cd+b^2cd-abc^2-abd^2=0 
<=>ad(ac-bd)-bc(ac-bd)=0 
<=>(ac-bd)(ad-bc)=0 
<=>ac=bd hoặc ad=bc 
=>a/b=c/d hoặc a/b=d/c

Lee Min Hoo
13 tháng 4 2016 lúc 20:28

Cho (a² + b²)/(c² + d²) = ab/cd. Chứng minh rằng a/b = c/d hoặc a/b = d/c 
Giải: Ta có (a² + b²)/(c² + d²) = ab/cd = 2ab/2cd = (a² + b² + 2ab)/(c² + d² + 2dc) = (a + b)²/(c + d)² = [ (a + b)/(c + d) ]² 
=> (a² + b²)/(c² + d²) = ab/cd = [ (a + b)/(c + d) ]² (1) 
Tương tự ta chứng minh được: 
(a² + b²)/(c² + d²) = ab/cd = [ (a - b)/(c - d) ]² (2) 
Từ (1) và (2) => [ (a + b)/(c + d) ]² = [ (a - b)/(c - d) ]² 
=> √[ (a + b)/(c + d) ]² = √[ (a - b)/(c - d) ]² 
=> I (a + b)/(c + d) I = I (a - b)/(c - d) I (trị tuyệt đối) 
=> (a + b)/(c + d) = (a - b)/(c - d) hoặc (a + b)/(c + d) = -(a - b)/(c - d) 

Trường hợp 1: (a + b)/(c + d) = (a - b)/(c - d) = (a + b + a - b)/(c + d + c - d) = 2a/2c = a/c 
=> (a + b)/(c + d) = (a - b)/(c - d) = a/c (3) 
tương tự: (a + b)/(c + d) = (a - b)/(c - d) = [a + b - (a - b) ]/[ c + d - (c - d) ] = (a + b - a + b)/(a + d - c + d) = 2c/2d = c/d 
=> (a + b)/(c + d) = (a - b)/(c - d) = c/d (4) 
Từ (3) và (4) => a/b = c/d (*) 

Trường hợp 2: (a + b)/(c + d) = -(a - b)/(c - d) 
<=> (a + b)/(c + d) = (-a + b)/(c - d) 
Chứng minh tương tự ta được a/b = d/c (*)(*) 
Từ (*) và (*)(*) => đpcm

Nguyễn Hà Phương
Xem chi tiết
Akai Haruma
26 tháng 10 lúc 10:45

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.

Ta có:

$(a+2c)(b+d)=(bk+2dk)(b+d)=k(b+2d)(b+d)(1)$

$(a+c)(b+2d)=(bk+dk)(b+2d)=k(b+d)(b+2d)(2)$

Từ $(1); (2)\Rightarrow (a+2c)(b+d)=(a+c)(b+2d)$

nguyễn thú hậu
Xem chi tiết
Lê Thị Anh Thi
20 tháng 2 2018 lúc 17:30

giải chổ nào vậy ko thấy

phuong anh nguyen
Xem chi tiết
Hồ Sỹ Sơn
Xem chi tiết
Trần Huyền Trang
22 tháng 4 2018 lúc 16:40

a, ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

áp dụng tính chất dă y tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)

Trần Huyền Trang
22 tháng 4 2018 lúc 16:48

b, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)

áp dụng tính chất dă tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)

Ngọc Hà
Xem chi tiết