\(\frac{x+1}{2x-3}=\frac{x+3}{x-3}\)
tìm x thuộc z
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
Tìm x thuộc Z để A thuộc Z
\(\frac{x+1}{2x-3}=\frac{x+3}{x-3}\)
tìm x thuộc z
\(\frac{x+1}{2x-3}=\frac{x+3}{x-3}\)
\(\Leftrightarrow\left(x+1\right).\left(x-3\right)=\left(2x-3\right).\left(x+3\right)\)
\(\Leftrightarrow x^2-3x+x-3=2x^2+6x-3x-9\)
\(\Leftrightarrow x^2-3x+x-3-2x^2-6x+3x+9=0\)
\(\Leftrightarrow-x^2-5x+6=0\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow x^2-x+6x-6=0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+6=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-6\end{array}\right.\)
\(\frac{x+1}{2x-3}=\frac{x+3}{x-3}\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=\left(x+3\right)\left(2x-3\right)\)
\(\Leftrightarrow x^2-3x+x-3=2x^2-3x+6x-9\)
\(\Leftrightarrow\left(x^2-2x^2\right)+\left(x-6x\right)+\left(3x-3x\right)=\left(-9+3\right)\)
\(\Leftrightarrow-x^2-5x=-6\)
\(\Leftrightarrow x\left(x+5\right)=6\)
Giải với các giá trị \(x\inƯ_6\)
Ta được x=1 ; x= - 6
P=\(\frac{x^3-26x-19}{x^2+2x-3}+\frac{2x}{1-x}+\frac{x-3}{x+3}\)
a,rút gọn P
b,tính gt của P khi x=-3,x=-1
c,tìm x để P=4,
d,tìm x thuộc Z để P thuộc Z
làm ơn giúp mik ,,,,câu 3 ,4 ý
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\left(\frac{x^2-2x}{x^3-x^2+x}\right)\))
a) Rút gọn
b) Tính giá trị A biết\(|x-\frac{3}{4}|=\frac{5}{4}\)
c) Tìm x thuộc Z để A thuộc Z
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)
\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)
Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)
c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z
=> -2x ⋮ x + 1
=> -2x - 2 + 2 ⋮ x + 1
=> -2( x + 1 ) + 2 ⋮ x + 1
Vì -2( x + 1 ) ⋮ ( x + 1 )
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
Vậy x ∈ { -3 ; -2 ; 0 ; 1 }
Cho biểu thức
\(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
a)Rút gọn B
b)Tìm x thuộc Z để B thuộc Z
a) Điều kiện : \(x\ne2;x\ne3\)
\(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)
\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)
b) Điều kiện \(x\in Z;x\ne2;x\ne3\)
Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên
\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)
mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)
Tìm x thuộc Z để A thuộc Z và tìm giá trị đó:
a) \(A=\frac{x+3}{x-2}\)
b) \(A=\frac{1-2x}{x+3}\)
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
Giúp mình với ạ!
cho biểu thức C = ( \(\frac{2x}{x-3}\)+\(\frac{x}{x+3}\)- \(\frac{x^2+3x+1}{9-x^2}\)) : ( \(\frac{2x+2}{x+3}\)- 1)
a) Rút gọn biểu thức
b) Tìm x để C<1
c) Tìm x thuộc Z để C thuộc Z
\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{x^2-9}\right):\frac{3}{x-3}\)
a, tìm điều kiện xác ddingj A, rút gọn A
b, Tính A khi x=-4
c, tìm x thuộc z để A thuộc z
a, ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{x\left(x-3\right)+2x\left(x+3\right)-3x^2-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(=\frac{3x-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}=\frac{3x-12}{3x+9}\)
b, \(x=-4\Rightarrow A=\frac{3.\left(-4\right)-12}{3.\left(-4\right)+9}=8\)
c, \(A\in Z\Rightarrow3x-12⋮\left(3x+9\right)\Rightarrow3x+9-21⋮\left(3x+9\right)\Rightarrow21⋮\left(3x+9\right)\)
\(\Rightarrow3x+9\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Mà \(3x+9⋮3\Rightarrow3x+9\in\left\{-21;-3;3;21\right\}\Rightarrow x\in\left\{-10;-4;-2;4\right\}\) (thỏa mãn điều kiện)
a, ĐỂ A xác định :
\(\Rightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{cases}}\Rightarrow x\ne\pm3.\)
\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x+3\right)\left(x-3\right)}\right):\frac{3}{x-3}\)
\(A=\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}:\frac{3}{x-3}\)
\(A=\frac{x^2-3x+2x^2+6x-3x^2+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(A=\frac{3x+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(A=\frac{x-4}{x+3}\)
b
a) \(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{x^2-9}\right):\frac{3}{x-3}\)
\(A=\left[\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
A xác định \(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\end{cases}}}\)
b) \(A=\left[\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
\(A=\left[\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
\(A=\left[\frac{x^2-3x+2x^2+6x-3x^2-12}{\left(x+3\right)\left(x-3\right)}+\right]:\frac{3}{x-3}\)
\(A=\left[\frac{3x-12}{\left(x+3\right)\left(x-3\right)}\right].\frac{x-3}{3}\)
\(A=\left[\frac{3\left(x-4\right)}{\left(x+3\right)\left(x-3\right)}\right].\frac{x-3}{3}\)
\(A=\frac{x-4}{x+3}\)
Với \(x=-4\)
\(\Rightarrow A=\frac{-4-4}{-4+3}=-\frac{8}{-1}=8\)
Vậy \(A=8\)tại \(x=-4\)
c) \(A=\frac{x-4}{x+3}=\frac{x+3-7}{x+3}=1-\frac{7}{x+3}\)
Có \(1\in Z\)
Để \(A\in Z\Rightarrow\frac{7}{x+3}\in Z\)
Có: \(x\in Z\Rightarrow x+3\in Z\Rightarrow\frac{7}{x+3}\in Z\Leftrightarrow\left(x+3\right)\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\)
b tự lập bảng nhé~
Cho
P=\(\left(\frac{2}{\left(x+1\right)^3}\times\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\times\left(\frac{1}{x^2}+1\right)\right)\div\frac{x-1}{x^3}\)
a) Rút gọn P
b)Tìm x để P<1
c)Tìm x thuộc Z để P thuộc Z
a)\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}.\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\left(ĐKXĐ:x\ne0;-1\right)\)
\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{x+1}{x}\right)+\frac{1}{\left(x+1\right)^2}.\left(\frac{x^2+1}{x^2}\right)\right]:\frac{x-1}{x^3}\)
\(P=\left[\frac{2}{\left(x+1\right)^2x}+\frac{x^2+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{x^3}\)
\(P=\left[\frac{x^2+2x+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{3}\)
\(P=\frac{\left(x+1\right)^2}{x^2\left(x+1\right)^2}:\frac{x-1}{3}\)
\(P=\frac{3}{x^2\left(x-1\right)}\)
b)Bài này liên quan đến dấu lớn nên mk ko làm đc