Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bao than đen
Xem chi tiết
Nguyễn Ngọc Phượng
Xem chi tiết
Võ Đông Anh Tuấn
20 tháng 8 2016 lúc 10:43

\(\frac{x+1}{2x-3}=\frac{x+3}{x-3}\)

\(\Leftrightarrow\left(x+1\right).\left(x-3\right)=\left(2x-3\right).\left(x+3\right)\)

\(\Leftrightarrow x^2-3x+x-3=2x^2+6x-3x-9\)

\(\Leftrightarrow x^2-3x+x-3-2x^2-6x+3x+9=0\)

\(\Leftrightarrow-x^2-5x+6=0\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+6=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-6\end{array}\right.\)

Isolde Moria
20 tháng 8 2016 lúc 10:45

\(\frac{x+1}{2x-3}=\frac{x+3}{x-3}\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=\left(x+3\right)\left(2x-3\right)\)

\(\Leftrightarrow x^2-3x+x-3=2x^2-3x+6x-9\)

\(\Leftrightarrow\left(x^2-2x^2\right)+\left(x-6x\right)+\left(3x-3x\right)=\left(-9+3\right)\)

\(\Leftrightarrow-x^2-5x=-6\)

\(\Leftrightarrow x\left(x+5\right)=6\)

Giải với các giá trị \(x\inƯ_6\)

Ta được x=1 ; x= - 6

Thanh Thủy
Xem chi tiết
Nhok Song Tử
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
10 tháng 12 2020 lúc 22:27

\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

 \(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)

\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)

\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)

Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)

c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z

=> -2x ⋮ x + 1

=> -2x - 2 + 2 ⋮ x + 1

=> -2( x + 1 ) + 2 ⋮ x + 1

Vì -2( x + 1 ) ⋮ ( x + 1 )

=> 2 ⋮ x + 1

=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }

x+11-12-2
x0-21-3

Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

Vậy x ∈ { -3 ; -2 ; 0 ; 1 }

Khách vãng lai đã xóa
nguyenthiluyen
Xem chi tiết
Đặng Thanh Thủy
23 tháng 6 2017 lúc 22:55

a) Điều kiện : \(x\ne2;x\ne3\)

 \(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

Đặng Thanh Thủy
23 tháng 6 2017 lúc 23:03

b) Điều kiện \(x\in Z;x\ne2;x\ne3\)

Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên

\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)

mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)

Phạm Minh Dương
Xem chi tiết
Phạm Tuấn Kiệt
9 tháng 6 2016 lúc 15:42

a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì  x - 2 là ước của 5. 
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
*  x = 3  =>  A = 6

*  x = 7  =>  A = 2 
*  x = 1  =>  A = - 4

*  x = -3  =>  A = 0 
b)  \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì  x + 3 là ước của7. 
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
*  x = -2  =>  A = 5

*  x = 4  =>  A = -1 
*  x = -4   =>  A = - 9

*  x = -10  =>  A = -3 . 

 

Trang Cao
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Pham Van Hung
12 tháng 12 2018 lúc 20:47

a, ĐKXĐ: \(x\ne\pm3\)

\(A=\frac{x\left(x-3\right)+2x\left(x+3\right)-3x^2-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)

\(=\frac{3x-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}=\frac{3x-12}{3x+9}\)

b, \(x=-4\Rightarrow A=\frac{3.\left(-4\right)-12}{3.\left(-4\right)+9}=8\)

c, \(A\in Z\Rightarrow3x-12⋮\left(3x+9\right)\Rightarrow3x+9-21⋮\left(3x+9\right)\Rightarrow21⋮\left(3x+9\right)\)

\(\Rightarrow3x+9\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Mà \(3x+9⋮3\Rightarrow3x+9\in\left\{-21;-3;3;21\right\}\Rightarrow x\in\left\{-10;-4;-2;4\right\}\) (thỏa mãn điều kiện)

❤  Hoa ❤
12 tháng 12 2018 lúc 20:48

a, ĐỂ A xác định : 

\(\Rightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{cases}}\Rightarrow x\ne\pm3.\)

\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x+3\right)\left(x-3\right)}\right):\frac{3}{x-3}\)

\(A=\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}:\frac{3}{x-3}\)

\(A=\frac{x^2-3x+2x^2+6x-3x^2+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)

\(A=\frac{3x+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)

\(A=\frac{x-4}{x+3}\)

b

kudo shinichi
12 tháng 12 2018 lúc 20:55

a) \(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{x^2-9}\right):\frac{3}{x-3}\)

\(A=\left[\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)

A xác định \(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\end{cases}}}\)

b) \(A=\left[\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)

\(A=\left[\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)

\(A=\left[\frac{x^2-3x+2x^2+6x-3x^2-12}{\left(x+3\right)\left(x-3\right)}+\right]:\frac{3}{x-3}\)

\(A=\left[\frac{3x-12}{\left(x+3\right)\left(x-3\right)}\right].\frac{x-3}{3}\)

\(A=\left[\frac{3\left(x-4\right)}{\left(x+3\right)\left(x-3\right)}\right].\frac{x-3}{3}\)

\(A=\frac{x-4}{x+3}\)

Với \(x=-4\)

\(\Rightarrow A=\frac{-4-4}{-4+3}=-\frac{8}{-1}=8\)

Vậy \(A=8\)tại \(x=-4\)

c) \(A=\frac{x-4}{x+3}=\frac{x+3-7}{x+3}=1-\frac{7}{x+3}\)

Có \(1\in Z\)

Để \(A\in Z\Rightarrow\frac{7}{x+3}\in Z\)

Có: \(x\in Z\Rightarrow x+3\in Z\Rightarrow\frac{7}{x+3}\in Z\Leftrightarrow\left(x+3\right)\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\)

b tự lập bảng nhé~

nguyenthiluyen
Xem chi tiết
Trịnh Thành Công
27 tháng 6 2017 lúc 21:45

a)\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}.\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\left(ĐKXĐ:x\ne0;-1\right)\)

\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{x+1}{x}\right)+\frac{1}{\left(x+1\right)^2}.\left(\frac{x^2+1}{x^2}\right)\right]:\frac{x-1}{x^3}\)

\(P=\left[\frac{2}{\left(x+1\right)^2x}+\frac{x^2+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{x^3}\)

\(P=\left[\frac{x^2+2x+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{3}\)

\(P=\frac{\left(x+1\right)^2}{x^2\left(x+1\right)^2}:\frac{x-1}{3}\)

\(P=\frac{3}{x^2\left(x-1\right)}\)

b)Bài này liên quan đến dấu lớn nên mk ko làm đc