Tính tổng:
\(50+\frac{50}{3}+\frac{25}{3}+\frac{30}{4}+\frac{10}{3}+\frac{100}{6.7}+...+198
.
99\)
Tính tổng:
\(50+\frac{50}{3}+\frac{25}{3}+\frac{30}{4}+\frac{10}{3}+\frac{100}{6.7}+...+198.99\)
Tính tổng :
\(B=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{3}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{1}{99}\)
\(B=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{3}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{1}{99}\)
\(B=\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+\frac{100}{4.5}+\frac{100}{5.6}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{99.100}\)
\(B=100\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(B=100\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(B=100\left(1-\frac{1}{100}\right)\)
\(B=100.\frac{99}{100}=99\)
Tính
\(B=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{3}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{1}{99}\)
Tìm X:
\(\frac{50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{3}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{1}{99}}{\left(2x-1\right)}\)=11
THỰC HIỆN PHÉP TÍNH SAU
50 + \(\frac{50}{3}\)+ \(\frac{25}{3}\)+ \(\frac{20}{4}\)+\(\frac{10}{3}\)+\(\frac{100}{6.7}\)+.........+ \(\frac{100}{98.99}\)+\(\frac{1}{99}\)
( GIẢI CHI TIẾT MÌNH LIKE CHO )
50+\(\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{3}+\frac{100}{67}\)
Bài 1 :Tìm a,b biết :
\(a+b=3.\left(a-b\right)=\)\(2\frac{a}{b}\)
Bài 2 :
\(A=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{5}+\frac{100}{67}+...+\frac{100}{98.99}+\frac{1}{99}\)
Bài 1 :
\(a+b=3.\left(a-b\right)=\)\(2\frac{a}{b}\)
\(\Rightarrow a+b=3.\left(a-b\right)\)
\(\Rightarrow a+b=3a-3b\)
\(\Rightarrow3a-3b-a-b=0\)
\(\Rightarrow2a-4b=0\)
\(\Rightarrow2.\left(a-2b\right)=0\)
\(\Rightarrow\hept{\begin{cases}a-2b=0\\a=2b\end{cases}}\)
Ta có : \(a+b=\frac{2a}{b}\)
Thay \(a=2b\) vào
\(\Rightarrow2b+b=\frac{2.23}{b}\)
\(\Rightarrow3b=\frac{4b}{b}\Rightarrow3b=4\)
\(\Rightarrow b=\frac{4}{3}\Rightarrow a=2.\frac{4}{3}=\frac{8}{3}\)
Vậy \(a=\frac{8}{3}\) và \(b=\frac{4}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(B=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{5}+\frac{100}{6.7}+...+\)\(\frac{100}{98.99}+\frac{1}{99}\)
\(B=\frac{100}{2}+\frac{100}{6}+\frac{100}{12}+\frac{100}{20}+\frac{100}{30}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{9900}\)
\(B=\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+\frac{100}{4.5}+\frac{100}{5.6}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{99.100}\)
\(B=100.\frac{100}{2}+\frac{100}{2}-\frac{1}{3}+\frac{100}{3}-\frac{100}{4}+\frac{100}{4}-\frac{100}{5}+\frac{100}{5}-\frac{100}{6}+\frac{100}{6}\)\(-\frac{100}{7}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{99}-1\)
\(B=100-1\)
\(B=99\)
Chúc bạn học tốt ( -_- )
Tính tổng B=50+50/3+25/3+20/4+10/3+100/6.7+...+100/98.99+1/99
\(\Rightarrow A=\frac{600}{12}+\frac{240}{12}+\frac{100}{12}+\frac{60}{12}+\frac{40}{12}.\)
\(=\frac{2080}{12}=\frac{520}{3}.\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{50}{6}-\frac{50}{7}\right)+.....+\frac{1}{2}\left(\frac{50}{89}-\frac{50}{99}\right)+\frac{1}{99}\)
\(=\frac{1}{2}\left(\frac{50}{6}-\frac{50}{7}+\frac{50}{7}-\frac{50}{8}+.................+\frac{50}{98}-\frac{50}{99}\right)+\frac{1}{99}\)
\(=\frac{1}{2}\left(\frac{50}{6}-\frac{50}{99}\right)+\frac{1}{99}\)
Từ A và C ta có \(B=\frac{520}{3}+\frac{1}{2}\left(\frac{50}{6}-\frac{50}{99}\right)+\frac{1}{99}\)
\(=\left(\frac{520}{3}+\frac{1}{99}\right)+\frac{1}{2}\left(\frac{50}{6}-\frac{50}{99}\right)\)
\(=\frac{17161}{99}+\frac{1}{2}x\frac{775}{99}\)
\(=\frac{17161}{198}+\frac{17161}{99}=\frac{17161}{198}+\frac{34322}{198}=\frac{17161}{66}\)
vậy biểu thức\(B=\frac{17161}{66}\)
Ta chia B thành 2 phần là A và C
Ta có :\(A=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{3}\)
\(B=\frac{100}{6x7}+..........+\frac{100}{98x99}+\frac{1}{99}\)
TỪ NHA BN MK LÀM ĐÉN ĐÓ TÍ NỮA MK LÀM TIẾP H MK CÓ VIỆC BN ZÙI
tớ làm tiếp nhé xin các bn tha lỗi vì mình có chuyện đành dùng tạm nk này vậy
A=\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}}\)
B=\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)