Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Khánh Nhi
Xem chi tiết
Harry Potter
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 3 2018 lúc 18:16

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).

Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.

Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )

Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d

Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 1 2019 lúc 15:23

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).

Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.

Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )

Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d

Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d

Tạ Minh Huyền
Xem chi tiết
Tạ Minh Huyền
8 tháng 2 2020 lúc 20:08

Mọi người làm nhanh jup mik nhé, ai có đáp án sẽ k luôn. Kamsa =)

Khách vãng lai đã xóa
Ngô Ngọc Hải	Linh
27 tháng 3 2020 lúc 10:09

kkk em mới học lớp 7

Khách vãng lai đã xóa
Ngô Ngọc Hải	Linh
17 tháng 4 2020 lúc 20:07

em nói nhầm em mới học lớp 6

Khách vãng lai đã xóa
Thái Thùy Linh
Xem chi tiết
Hoàng Tử Hà
19 tháng 4 2021 lúc 20:22

Làm bừa coi xem đk :b

\(M\in\Delta:y=3-x\Rightarrow M\left(x;3-x\right)\)

a/ MA+MB min

\(MA=\sqrt{\left(x_A-x_M\right)^2+\left(y_A-y_M\right)^2};MB=\sqrt{\left(x_B-x_M\right)^2+\left(y_B-y_M\right)^2}\)

\(Minkovsky:MA+MB\ge\sqrt{\left(x_M-x_A+x_M-x_B\right)^2+\left(y_M-y_A+y_M-y_B\right)^2}\)

\("="\Leftrightarrow\dfrac{x_A-x_M}{y_A-y_M}=\dfrac{x_B-x_M}{y_B-y_M}\Leftrightarrow\dfrac{1-x}{-1-3+x}=\dfrac{-x}{1-3+x}\)

\(\Leftrightarrow x=-2\Rightarrow y=5\Rightarrow M\left(-2;5\right)\)

|MA-MB| max

\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{1+4}=\sqrt{5}\)

Theo bdt tam giác ta luôn có: \(\left|MA-MB\right|\le AB\)

\(\Leftrightarrow\left|\sqrt{\left(x_M-1\right)^2+\left(y_M+1\right)^2}-\sqrt{x_M^2+\left(y_M-1\right)^2}\right|\le\sqrt{5}\)

\("="\Leftrightarrow M,A,B-thang-hang\)

\(\Leftrightarrow\overrightarrow{MA}=k\overrightarrow{MB}\Leftrightarrow\left\{{}\begin{matrix}x_A-x_M=k\left(x_B-x_M\right)\\y_A-y_M=k\left(y_B-y_M\right)\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1-x}{-x}=\dfrac{-4+x}{-2+x}\Leftrightarrow x=-2\Rightarrow y=5\Rightarrow M\left(-2;5\right)\)

Câu b tương tự bạn tự làm nốt

Minamoto Shizuka
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Charlotte Grace
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 21:47

Cách 1:

Do M thuộc d, gọi tọa độ M có dạng \(M\left(2m-2;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2m-2;m-6\right)\\\overrightarrow{BM}=\left(2m-4;m-5\right)\end{matrix}\right.\)

Đặt \(T=MA+MB=\sqrt{\left(2m-2\right)^2+\left(m-6\right)^2}+\sqrt{\left(2m-4\right)^2+\left(m-5\right)^2}\)

\(T=\sqrt{5m^2-20m+40}+\sqrt{5m^2-26m+41}\)

\(T=\sqrt{5\left(m-2\right)^2+\left(2\sqrt{5}\right)^2}+\sqrt{5\left(\dfrac{13}{5}-m\right)^2+\left(\dfrac{6}{\sqrt{5}}\right)^2}\)

\(T\ge\sqrt{5\left(m-2+\dfrac{13}{5}-m\right)^2+\left(2\sqrt{5}+\dfrac{6}{\sqrt{5}}\right)^2}=\sqrt{53}\)

Dấu "=" xảy ra khi và chỉ khi:

\(6\left(m-2\right)=10\left(\dfrac{13}{5}-m\right)\Leftrightarrow m=\dfrac{19}{8}\)

\(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

Nguyễn Việt Lâm
12 tháng 12 2020 lúc 21:47

Cách 2:

Thay tọa độ A và B vào pt (d) được 2 giá trị cùng dấu âm \(\Rightarrow A;B\) nằm cùng phía so với (d)

Gọi d' là đường thẳng qua A và vuông góc với d \(\Rightarrow\) pt d' có dạng:

\(2\left(x-0\right)+1\left(y-6\right)=0\Leftrightarrow2x+y-6=0\)

Gọi C là giao điểm của d và d' \(\Rightarrow\left\{{}\begin{matrix}x-2y+2=0\\2x+y-6=0\end{matrix}\right.\)

\(\Rightarrow C\left(2;2\right)\)

Gọi D là điểm đối xứng với A qua d \(\Leftrightarrow C\) là trung điểm AD \(\Rightarrow D\left(4;-2\right)\)

Phương trình BD có dạng: \(7\left(x-2\right)+2\left(y-5\right)=0\Leftrightarrow7x+2y-24=0\)

\(MA+MB\) nhỏ nhất khi và chỉ khi M là giao điểm của BD

\(\Rightarrow\) Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}7x+2y-24=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)