cho M=9+8+2+7/3+...+1/9
N=1/2+1/3+1/4+...+1/10
chứng minh: M chia hết cho N
M=1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9 chứng minh M chia hết cho 11
Ta có (1/2+1/9)+(1/3+1/8)+.....+(1/4+1/5)
=11/18+11/24+........+11/20
Vì các số hạng đều có tử chia hết cho 9=>tổng các phân số đó có tử chia het cho 11
1.Cho m thuộc Z . C/m :m^3 - 13m chia hết cho 6
2.Cho p và 10p + 1 là các số nguyên tố (p>3). C/m 5p+1 chia hết cho 6
3.C/m : A=88....8 (n c/số 8) - 9 +n chia hết cho 9 (n thuộc N*)
4.C/m :
a) A= 75(4^2016 + 4^2015 +...+ 4^2 + 5) + 25 chia hết cho 4^2017
b) B= 1/2 (7^2016^2015 - 3^92^94) chia hết cho 5
5.Cho (m,n thuộc N , n#0). C/m : 405^n + 2^405 + m^2 ko chia hết cho 10
P/s : Các bạn giúp mk nhoa !!! :))
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
cho b = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 + 2 mũ 7 + 2 mũ 8 + 2 mũ 9 +2 mũ 10chứng minh B chia hết cho 3
GIÚP MK VỚI
\(B=2+2^2+2^3+2^4+...+2^{10}\)
=>\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
=>\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
=>\(B=3\left(2+2^3+...+2^9\right)⋮3\left(đpcm\right)\)
Trả lời:
\(B=2+2^2+2^3+2^4+....2^9+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\) (Phần này là nhóm các lũy thừa có cùng cơ số 2 vào các nhóm sao cho tổng nhóm đầu tiên chia hết cho 3 thì mấy nhóm sau với số số hạng tương tự nhóm 1 thì oke giải tiếp như sau)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^3+...+2^9\right)\)
Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)
=> đpcm
Vậy B chia hết cho 3
#Huyền Anh
Giúp mk với
cho b = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 + 2 mũ 7 + 2 mũ 8 + 2 mũ 9 +2 mũ 10chứng minh B chia hết cho 3
\(B=2+2^2+2^3+2^4+...+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^2\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^2+...+2^9\right)⋮3\)
\(\Rightarrow B⋮3\)
..
\(B=2+2^2+2^3+...+2^{10}\)
=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
=\(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
=\(2.3+2^3.3+2^5.3+2^7.3+2^9.3\)
=\(3\left(2+2^3+2^5+2^7+2^9\right)⋮3\)
Vậy \(B⋮3\)
\(B=2+2^2+2^3+...+2^{10}\)
\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(B=2\cdot3+2^3\cdot3+...+2^9\cdot3\)
\(B=3\left(2+2^3+...+2^9\right)\)
Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)
\(\Rightarrow B⋮3\)
Vậy ...
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
Chứng minh rằng:
A=1+2+2^2+2^3+...+2^39 là bội của 15
T=125^7-25^9 là bội của 124
M=7+7^2+7^3+7^4+...+7^2000 chia hết cho 8
P=a+a^2+a^3+a^4+...+a^2n chia hết cho a+1 với a,n thuộc N
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
*Mong các bạn giải hết cho mình nha*
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4
c/ (2n +2)12 = 24(n+1) chia hết cho 24