a ) \(\frac{x+3}{x^2-4}.\frac{8-12x+6x^2-x^3}{9x+27}\)
Nhân phân thức
a) \(\frac{30x^3}{11y^2}.\frac{121y^5}{25x}\)
b) \(\frac{x+3}{x^2-4}.\frac{8-12x+6x^2-x^3}{9x+27}\)
a) \(\frac{30x^3}{11y^2}.\frac{121y^5}{25x}=\frac{6x^2.11y^3}{5}=\frac{66x^2y^3}{5}\)
b) \(\frac{x+3}{x^2-4}.\frac{8-12x+6x^2-x^3}{9x+27}=\frac{x+3}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)^3}{9\left(x+3\right)}\)
\(=\frac{-\left(x-2\right)^2}{9\left(x+2\right)}\)
p/s: chúc bạn học tốt
\(\frac{x+3}{x^2-4}.\frac{8-12x+6x^2-x^3}{9x+27}\)
rut gon bieu thuc
\(\frac{x+3}{x^2-4}.\frac{8-12x+6^2-x^3}{9x+27}\)
\(=\frac{x+3}{x^2-4}.\frac{-x^3+6x^2-4}{9x+27}\)
\(=\frac{\left(x+3\right)\left(-x^3+6x^2-4\right)}{\left(x^2-4\right)\left(9x+27\right)}\)
\(=\frac{\left(x+3\right)\left(-x^3+6x-4\right)}{9\left(x+3\right)\left(x^2-4\right)}\)
\(=\frac{-x^3+6x^2-4}{9\left(x^2-4\right)}\)
Mk ko chắc
(x+3 )/ (x-2)(x+2) . [(2-x)^3 / 9(x+3)]
= -(x-2)^2 / [(x+2).9]
Tìm x biết:
\(a)x^3-6x^2+12x-8=0\\ b)8x^3-12x^2+6x-1=0\\ c)x^3+9x^2+27x+27=0\)
\(\left(\frac{X^2+3X}{X^3+3X^2+9X+27}+\frac{3}{X+9}\right):\left(\frac{1}{X-3}-\frac{6X}{X^3-3X^2+9X-27}\right)\)
= \(\left[\frac{x.\left(x+3\right)}{\left(x+3\right).\left(x^2+9\right)}+\frac{3}{x+9}\right]:\left[\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\) ]
\(=\frac{x+3}{x^2-9}.\frac{\left(x-3\right).\left(x^2+9\right)}{x^2+9-6x}\)
= \(\frac{\left(x-3\right).\left(x+3\right)}{\left(x-3\right)^2}\)
= \(\frac{x+3}{x-3}\)
k mik nhé. Plssss~
Cho biểu thức P=\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
Tìm GTNN của
a)\(A=\frac{3x^2-6x+17}{x^2-2x+5}\)
b)\(C=\frac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
c)\(D=\frac{x^6+512}{x^2+8}\)
Rút gon: \(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right)\): \(\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
=\(\left[\frac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
=\(\left[\frac{x\left(x-3\right)}{\left(x^2+9\right)\left(x-3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{\left(x^2+9\right)\left(x-3\right)}\right]\)
=\(\frac{x}{x^2+9}\):\(\left[\frac{x^2+9}{\left(x-3\right)\left(x^2+9\right)}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
=\(\frac{x}{x^2+9}\):\(\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
=\(\frac{x}{x^2+9}\):\(\frac{x-3}{x^2+9}\)
=\(\frac{x}{x^2+9}\).\(\frac{x^2+9}{x-3}\)
=\(\frac{x}{x-3}\)
rút gọn biểu thức:
P = \(\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(ĐKXĐ:x\ne\pm3\)
\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)
phân tích các đa thức sau thành nhân tử
a, 27x mũ 3 + 27 xmũ 2 + 9x + 1
b, x mũ 3 - 6x mũ 2 + 12x - 8
c, 8x mũ 3 + 12x mũ 2 + 6x + 1
d, 9x mũ 3 - 12x mũ 2 + 6x - 1
e, x mũ 3 - 6x mũ 2 y + 12xy mũ 2 - 8y mũ 3