∑∞x=0 \(\frac{X^2-3X+4}{7X^2+5X+1}\)
Bài 4 Giải các bất phương trình sau :
31 , \(\frac{-3x^2-x+4}{x^2+3x+5}>0\)
32 , \(\frac{4x^2+3x-1}{x^2+5x+7}>0\)
33 , \(\frac{5x^2+3x-8}{x^2-7x+6}< 0\)
34 , \(\frac{2x-5}{x^2-6x-7}< \frac{1}{x-3}\)
35 , \(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
giải các pt sau
a)\(2x-\frac{3x-1}{3}=2+\frac{x-3}{4}\)
b)\(\frac{x-5}{2}+\frac{1}{4}=\frac{x-2}{3}-x\)
c)\(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x+2}{8}-5\)
d)3x2+7x - 20 = 0
e)x3-3x+2 = 0
\(3x^2+7x-20=0\)
Ta có \(\Delta=7^2+4.3.20=289,\sqrt{\Delta}=17\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+17}{6}=\frac{5}{3}\\x=\frac{-7-17}{6}=-4\end{cases}}\)
a) \(2x-\frac{3x-1}{3}=2+\frac{x-3}{4}\)
<=> 24x - 4(3x - 1) = 24 + 3(x - 3)
<=> 24x - 12x - 4 = 24 + 3x - 9
<=> 12x + 4 = 24 + 3x - 9
<=> 12x + 4 = 3x + 15
<=> 12x = 3x + 15 - 4
<=> 12x = 3x + 11
<=> 12x - 3x = 11
<=> 9x = 11
<=> x = 11/9
Vậy: tập nghiệm phương trình: S = {11/9}
b) \(\frac{x-5}{2}+\frac{1}{4}=\frac{x-2}{3}-x\)
<=> 3(x - 5) + 3/2 = 2(x - 2) - 6x
<=> 3x - 15 + 3/2 = 2x - 4 - 6x
<=> 3x - 27/2 = -4x - 4
<=> 3x = -4x - 4 + 27/2
<=> 3x = -4x + 19/2
<=> 3x + 4x = 19/2
<=> 7x = 19/2
<=> x = 19/14
Vậy: tập nghiệm phương trình: S = {19/14}
c) \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x+2}{8}-5\)
<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{8}-5\)
<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2x+1}{4}-5\)
<=> 2(5x - 3) - 3(7x - 1) = 3(2x + 1) - 60
<=> 10x - 6 - 21x + 3 = 6x + 3 - 60
<=> -11x - 3 = 6x - 57
<=> -3 = 6x - 57 + 11x
<=> -3 = 17x - 57
<=> -3 + 57 = 17x
<=> 54 = 17x
<=> x = 54/17
Vậy: tập nghiệm phương trình: S = {59/17}
d) 3x2 + 7x - 20 = 0
<=> 3x2 + 12x - 5x - 20 = 0
<=> 3x(x + 4) - 5(x + 4) = 0
<=> (x + 4)(3x - 5) = 0
<=> x + 4 = 0 hoặc 3x - 5 = 0
<=> x = -4 hoặc x = 5/3
Vậy: tập nghiệm phương trình: S = {-4; 5/3}
e) x3 - 3x + 2 = 0
<=> (x2 + x - 2)(x - 1) = 0
<=> (x - 1)(x + 2)(x - 1) = 0
<=> x - 1 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -2
Vậy: tập nghiệm phương trình: S = {1; -2}
\(1.\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}
\)
2.\(\frac{2x^4}{\left(x+1\right)^2}-\frac{5x^2}{x+1}+2=0\)
3.\(\left(x+\frac{1}{x}\right)^2-6\left(x+\frac{1}{x}\right)+8=0\)
4.\(\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
5.\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Tính giá trị biểu thức của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
3. h(x) = -x4 + 3x3 + 2x2 - 5x + 1 tại x = -2; -1; 1; 2
4. r(x) = 3x4 + 7x3 + 4x2 - 2x - 2 tại x = -1; 0; 1
HELP ME T^T
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
xét x=1 có f(x) =-3.14 +5.13 +2.12-7.1+7
=-3.1+5.1+2.1-7+7
=-3+5+2-7+7
=4
xét x=0 có f(x) =-3.04 +5.03 +2.02-7.0+7
=0+0+0-0+7=7
xét x=2 có f(x) =-3.24 +5.23 +2.22-7.2+7
=-3.16+5.8+2.4-14+7
=48+40+8-14+7
=89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
xét x=-1 có: g(x)=(-1)4-5.(-1)3+7.(-1)2+15.(-1)+2
=1-5.(-1)+7.1-15+2
=1-(-5)+7-15+2
=1+5+7-15+2=0
xét x=0 có: g(x)=04-5.03+7.02+15.0+2
=0-0+0+0+2+2=2
xét x=1 có: g(x)=14-5.13+7.12+15.1+2
=1-5.1+7.1-15+2
=1-5+7-15+2
=1-5+7-15+2=-10
xét x=2 có: g(x)=24-5.23+7.22+15.2+2
=32-5.8+7.4-30+2
=32-40+28-30+2
=-8
3. h(x) = -x4 + 3x3 + 2x2 - 5x + 1 tại x = -2; -1; 1; 2
xét x=-2có:h(X)=-(-2)4 + 3(-2)3 + 2.(-2)2 - 5.(-2) + 1
=-(32)+3.(-8)+2.4+10+1
=-32-24+8+10+1
=-37
xét x=2có:h(X)=-(2)4 + 3.23 + 2.22 - 5.2 + 1
=-(32)+3.8+2.4+10+1
=-32+24+8+10+1
=11
xét x=1có:h(X)=14 + 3.13 + 2.12 - 5.1 + 1
=1+3.1+2.1+5+1
=1+3+2+5+1
=13
xét x=-1có:h(X)=-14 + 3.(-1)3 + 2.(-1)2 - 5.(-1) + 1
=1+3.(-1)+2.(-1)+5+1
=1-3-2+5+1
=2
4. r(x) = 3x4 + 7x3 + 4x2 - 2x - 2 tại x = -1; 0; 1
xét x=-1có:r(X)= 3(-1)4 + 7(-1)3 + 4(-1)2 - 2(-1)- 2
= 3.1+7.(-1) +4.1+2-2
=3-7+4+2-2
= 0
xét x=0có:r(X)= 3.04 + 7.03 + 4.02 - 2.0- 2
= 0+0+0-0-2
= -2
xét x=1có:r(X)= 3(1)4 + 7(1)3 + 4(1)2 - 2(1)- 2
= 3.1+7.1 +4.1-2-2
=3+7+4-2-2
= 10
giải hộ mk vs
1/2x^4+3x^3-x^2+3x+2=0
2/x^4-5x^3+7x^2-5x-16=0
3/(x+2)^4+(x+4)^4=16
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
Cho đa thức f(x)= -3x^4 - 5x^2 + 13x^4 - 7x + 5x^3 - 10-x^2 + 7x - 2
Chứng tỏ rằng f(-1) + f(1) + 14 = 0
1).(4-3x)(10-5x)=0 2).(7-2x)(4+8x)=0 3).(9-7x)(11-3x)=0
4).(7-14x)(x-2)=0 5).(\(\dfrac{7}{8}\)-2x)(3x+\(\dfrac{1}{3}\))=0 6).3x-2x\(^2\)
7).5x+10x\(^2\)
1.
<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
2.
<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
3.
<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)
4.
<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
5.
<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)
6,7. ko đủ điều kiện tìm
Bài 1 giải các phương trình sau
A. 5x-25=0
4x-1=3x-2
B. 3/4-3x=0
C. 3x-2=2x+3
(2x-3)(x+3)=3x+9
D. 2(x-3)=5(x+4)
E. 8x-3/5=2x+8/8
X-5x+2/6=7-3x/4
G. 7x-3/5=5x+7/7
H. (3x-5)(7x+5)=0
L. (1/2-3/43/4)(5-2x)=0
M. (2x+7)(x-5)(5x+1)=0
M.x+1/x-3 - 1/x-1=2/(x-1)(x-3)
\(A,5x-25=0\)
\(\Leftrightarrow5x-5^2=0\)
\(\Leftrightarrow5\left(x-1\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
Chúc bạn học tốt !
* 4x - 1 = 3x - 2
⇔ 4x - 3x = -2 + 1
⇔ x = -1
Vậy tập nghiệm của pt là S = {-1}
* \(\frac{3}{4}-3x=0\)
⇔ \(\frac{3}{4}-\frac{3x.4}{4}=0\)
⇒ 3 - 12x = 0
⇔ 12x = 3
⇔ x = \(\frac{3}{12}=\frac{1}{4}\)
Vậy tập nghiệm của pt là S = \(\left\{\frac{1}{4}\right\}\)
* 3x - 2 = 2x + 3
⇔ 3x - 2x = 3 + 2
⇔ x = 5
Vậy tập nghiệm của pt là S = {5}
* 2(x - 3) = 5(x + 4)
⇔ 2x - 6 = 5x + 20
⇔ 2x - 5x = 20 + 6
⇔ -3x = 26
⇔ x = \(\frac{-26}{3}\)
Vậy tập nghiệm của pt là S = \(\left\{\frac{-26}{3}\right\}\)