\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
Tìm x
a)\(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
b)\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\left\{x+\frac{1}{5}\right\}^2+\frac{17}{25}=\frac{26}{25}\)
Ta có: \(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
<=> \(\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}=\frac{9}{25}\)
<=> \(x+\frac{1}{5}=\frac{9}{25}\)và \(x+\frac{1}{5}=-\frac{9}{25}\)
=> x= \(\frac{4}{25}\) và x=\(-\frac{14}{25}\)
Ta có:
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}-\frac{1}{5}=\frac{2}{5}\)
Vậy giá trị của x là \(\frac{2}{5}\)
Tìm x
a)\(5\frac{8}{17}:x+\left(-\frac{4}{7}\right)+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
b) \(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
Tìm x:
\(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=\frac{-24}{27}\)
\((x+\frac{1}{2})\times(\frac{2}{3}-2x)=0\)
\(\left\{x+\frac{1}{5}\right\}^2+\frac{17}{25}=\frac{26}{25}\)
\(\left(x+\frac{1}{2}\right)\cdot\left(\frac{2}{3}-2x\right)=0\)
TH1 : \(\Rightarrow x+\frac{1}{2}=0\)
\(x=0-\frac{1}{2}\)
\(x=\frac{-1}{2}\)
TH2 : \(\Rightarrow\frac{2}{3}-2x=0\)
\(2x=0+\frac{2}{3}=\frac{2}{3}\)
\(x=\frac{2}{3}\div2=\frac{1}{3}\)
\(\Rightarrow x=\frac{-1}{2};\frac{1}{3}\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
\(x=\frac{3}{5}^2-\frac{1}{5}^2\)
\(x=\frac{2}{5}\)
Tìm x, biết:
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{3}{5}^2\)
\(\left(x+\frac{1}{5}\right)=\frac{3}{5}\)
\(x=\frac{3}{5}-\frac{1}{5}\)
\(x=\frac{2}{5}\)
(x+1/5) . (x+1/5)=26/25-17/25
x+1/5 .x+1/5=9/25
x+1/5.x=9/25-5/25
x+1/5 . x=4/25
x.(1/5+1)=4/25
x. 6/5=4/25
x=4/25:6/5
x=2/15
tìm x biết :
a) \(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
b) \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
c) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{9}{25}\\ \left|\left(x+\frac{1}{5}\right)\right|=\frac{3}{5}\)
TH1: \(x=\frac{3}{5}-\frac{1}{5}\\ x=\frac{2}{5}\)
TH2: \(\left|\left(x+\frac{1}{5}\right)\right|=-\frac{3}{5}\\ x=-\frac{3}{5}-\frac{1}{5}\\ x=-\frac{4}{5}\)
\(a,\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{2}{5}\)
\(b,-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}+\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Rightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Rightarrow3x=\frac{1}{9}\)
\(\Rightarrow x=\frac{1}{27}\)
\(c,\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
Bổ sung câu a: \(\Rightarrow\) \(\left[\begin{array}{nghiempt}\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\\\left(x+\frac{1}{5}\right)^2=\left(-\frac{3}{5}\right)^2\end{array}\right.\)\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{5}=\frac{3}{5}\\x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=\frac{2}{5}\\x=-\frac{4}{5}\end{array}\right.\)
a)\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
b)\(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=\frac{24}{27}\)
Tìm x
a)\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
=\(\left(x+\frac{1}{5}\right)^2=\frac{9}{25}=\frac{3^2}{5^2}\)
=\(x+\frac{1}{5}=\frac{3}{5}\)
\(x=\frac{2}{5}\)
b)\(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=\frac{24}{27}\)
=\(x=-\frac{35}{27}\)