Tập nghiệm của phương trình là S = {....}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu “;”)
Tập nghiệm nguyên của bất phương trình \(\sqrt{5x}-2< =4\) là S = { } (Nhập các phần tử theo giá trị tăng dần, ngăn cách nhau bởi dấu “;”).
\(\sqrt{5x}-2\le4\Rightarrow\sqrt{5x}\le6.\)
I5xI<=36
\(\orbr{\begin{cases}x< =\frac{36}{5}\approx7^+\\x>=\frac{-36}{5}\approx7^-\end{cases}}\),
S={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7)
\(\sqrt{5x}-2< =4\) ĐK:\(\sqrt{5x}>0\)<=> 5x > 0 <=> x>0
<=>\(\sqrt{5x}< =4+2\)
<=>\(\sqrt{5x}\)<= 6
<=> 5x <= \(6^2\)
<=>5x <= 36
<=> x <= \(\frac{36}{5}\)
<=> x <= 7,2
Tập nghiệm nguyên của bất phương trình là S = {....} (Nhập các phần tử theo giá trị tăng dần, ngăn cách nhau bởi dấu “;”).
\(\sqrt{5x-2}\le4\)
<=>\(\begin{cases}5x-2\ge0\\5x-2\le16\end{cases}\)<=> \(\begin{cases}x\ge\frac{2}{5}\\x\le\frac{18}{5}\end{cases}\)
<=>x=1,2,3
Tập nghiệm của phương trình \(\sqrt{x^2+4x}-\sqrt{\frac{x^2}{2}-8}=0\) là {......................................................} (Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";")
\(\sqrt{\frac{3x-1}{x+2}}=\sqrt{5}\)
<=> \(\begin{cases}\frac{3x-1}{x+2}\ge0\\3x-1=5x+10\end{cases}\)
=> x=-11/2
thay x=-11/2 vào \(\frac{3x-1}{x+2}\)>=0 thỏa
=> nghiệm bpt là x=-11/2
\(pt\Leftrightarrow\sqrt{x^2+x-6}=\sqrt{x^2+2}\)
Ta thấy 2 vế luôn dương bình phương lên ta có:
\(\sqrt{\left(x^2+x-6\right)^2}=\sqrt{\left(x^2+2\right)^2}\)
\(\Rightarrow x^2+x-6=x^2+2\)
\(\Rightarrow x^2-x^2+x=6+2\)
\(\Rightarrow x=8\)
Tập giá trị của x thỏa mãn đẳng thức x^6=9x^4 là S={ }.(Nhập các phần tử theo giá trị tăng dần, ngăn cách nhau bởi dấu ‘’ ; ’’).
Tập nghiệm nguyên của bất phương trình là S = {....} (Viết các phần tử theo giá trị tăng dần, ngăn cách bởi dấu “;”)
\(\sqrt{x+2}>x\)
\(\Leftrightarrow x+2>x^2\)
\(\Leftrightarrow-x^2+x+2>0\)
\(\Leftrightarrow-\left(x^2-x-2\right)>0\)
\(\Leftrightarrow x^2+x-2x-2< 0\)
\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\begin{cases}x+1>0\\x-2< 0\end{cases}\) hoặc\(\begin{cases}x+1< 0\\x-2>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>-1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< -1\\x>2\end{cases}\) (vô nghiệm)
\(\Leftrightarrow-1< x< 2\)
Mà x nguyên
=>x=0;1
Tập nghiệm nguyên của bất phương trình là S = {....} (Viết các phần tử theo giá trị tăng dần, ngăn cách bởi dấu “;”)