Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Từ Quốc Bảo
Xem chi tiết
Thầy Hùng Olm
11 tháng 7 2023 lúc 9:34

72006 = 72.(74)501 

Vì (74)501  có chữ số tận cùng bằng 1

Nên 72006  có chữ số tận cùng bằng 9 

u23_Việt Nam
Xem chi tiết
FHhcy04
Xem chi tiết

           A = \(9999^{999^{99^9}}\)

Vì 999 không chia hết cho 2 nên \(999^{99^9}\) không chia hết cho 2 

Vậy \(999^{99^9}\) = 2k + 1

A = 99992k+1

A = (99992)k.9999

A = \(\overline{...1}\)k. 9999

A = \(\overline{..1}\).9999

A = \(\overline{..9}\)

B = vì 8 ⋮ 2 nên \(8^{7^{6^{5^{3^2}}}}\) ⋮ 2

Vậy B = 92k = (92)k = \(\overline{..1}\)k = \(\overline{..1}\)

Nguyễn Vũ Khánh Linh
Xem chi tiết

3 không chia hết cho 2 nên 

\(3^{5^7}\) không chia hết cho 2 

Vậy A = 19992k+1

      A = (19992)k.1999

    A = \(\overline{...1}\)k.1999

    A = \(\overline{..9}\)

Vì 6 ⋮ 2 nên \(6^{8^9}\) ⋮ 2

Vậy B = 20242k = (20242)k = \(\overline{..6}\)k = \(\overline{..6}\)

Đặng Hồng Trường
Xem chi tiết
Đoàn  Vũ Minh Tâm
Xem chi tiết
pham trung thanh
27 tháng 10 2017 lúc 20:52

\(4^{5^{6^7}}\)tận cùng 4 đó bạn

Phong Đãng
27 tháng 10 2017 lúc 20:55

Tận cùng là 4

pham trung thanh
27 tháng 10 2017 lúc 20:59

Ta có\(5^{6^7}\)chia 4 dư 1

\(\Rightarrow4^{5^{6^7}}\)có dạng\(4^{4k+1}=4^{4k}.4\)

Mà \(4^{4k}\)tận cùng 6

\(\Rightarrow4^{5^{6^7}}\)tận cùng 4

Phạm Thị Thu Hằng
Xem chi tiết
Phạm Tất Thắng
Xem chi tiết
Khải Nhi
12 tháng 8 2016 lúc 9:12

Nếu một số phân tích ra thành tích các thừa số nguyên tố:a=pt11.pt22...ptkk
thì số các số là ước của số a sẽ là (p1+1)(p2+1)...(pk+1)

Dựa vào nhận xét này, ta suy ra để số a là nhỏ nhất ta suy ra các thừa số nguyên tố có trong phân tích của số a phải là các thừa số từ nhỏ nhất đến lớn nhất có thể

Nhận xét thứ hai là với số có 16 ước ta có các trường hợp sau:
16=1.16=2.8=4.4=2.2.4=2.2.2.2
Với trường hợp 16 = 1.16 thì khi đó số a có dạng là a=\(2^{15}\)=32768
Với trường hợp 16 = 2.8 thì số a khi đó số a có dạng là a=\(2^7.3^1\)=384
Với trường hợp 16 = 4.4 thì khi đó số a có dạng là a=\(2^3.3^3\)=216
Với trường hợp 16 = 2.2.4 thì khi đó số a có dạng là a=\(2^3.3^2.5^1\)=120
Với trường hợp 16 = 2.2.2.2 thì khi đó số a có dạng là a=\(2^1.3^1.5^1.7^1\)=210
Bằng lập luận toán học ta vẫn có thể suy ra số a là 120
Bài toán trở thành tìm chữ số tận cùng của \(92^{120}\)

Ta dễ dàng có được: \(92^{120}=92^{4.30}=\left(92^4\right)^{30}=\left(....6\right)^{30}=...6\)

Chúc bạn học tốt

Nguyễn Minh Tuấn
Xem chi tiết
Đinh Tuấn Việt
8 tháng 4 2015 lúc 22:15

Tìm chữ số tận cùng của \(234^{6^{7^8}}\):

\(7^{4n}\)có chữ số tận cùng là 1 => \(7^8\)có chữ số tận cùng là 1.

Ta có: \(234^{6^{\left(...1\right)}}\)

\(6^n\)có chữ số tận cùng là 6 (n \(\in\) N*) => \(6^{\left(...1\right)}\)có chữ số tận cùng là 6.

Ta lại có: \(234^{\left(...6\right)}\)

Số có chữ số tận cùng là 4 khi nâng lên lũy thừa với số mũ 6 luôn có chữ số tận cùng là 6 =>\(234^{\left(...6\right)}\)có chữ số tận cùng là 6.

            Kết luận \(234^{6^{7^8}}\)có chữ số tận cùng là 6.

 

Đinh Tuấn Việt
8 tháng 4 2015 lúc 22:20

Mình chắn chắn 100%. Mình đã mất công ghi lời giải rồi thì bạn chọn Đúng cho mình đi !

 

Tuấn Anh goku
31 tháng 10 2016 lúc 21:19

Giỏi lắm