Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh Anh
Xem chi tiết
Chien Binh Anh Duong
Xem chi tiết
ngo ngac
18 tháng 12 2015 lúc 20:52

P=2/(a^2+b^2)+2/2ab+68/2ab. ap dung bdt 1/a+1/b>=4/a+b. ta co 2/(a^2+b^2)+2/2ab>=

Anh Đỗ Nguyễn Thu
Xem chi tiết
Akai Haruma
19 tháng 4 2020 lúc 10:42

Lời giải:

BĐT \(\Leftrightarrow (9+x^2y^2+y^2z^2+z^2x^2)(xy+yz+xz)\geq 36xyz(*)\)

Thật vậy, áp dụng BĐT AM-GM:

\(9+x^2y^2+y^2z^2+z^2x^2=1+1+...+1+x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt[12]{x^4y^4z^4}\)

\(xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}\)

Nhân theo vế ta có BĐT $(*)$ luôn đúng

Do đó ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

Ichigo Hollow
Xem chi tiết
๖Fly༉Donutღღ
28 tháng 5 2018 lúc 7:10

Áp dụng Cosi Rồi áp dụng tiếp AM-GM là ra nhé :) Ko bt có đúng ko nx 

Mình làm 1 phần nhé ko phải dùng Cosi

Phân tích: \(x+y+\frac{1}{2x}+\frac{2}{y}\)\(=\left(\frac{y}{2}+\frac{2}{y}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)+\left(\frac{x}{2}+\frac{1}{2x}\right)\)\(\ge2\sqrt{\left(\frac{x}{2}.\frac{1}{2}\right)}+2\sqrt{\left(\frac{y}{2}.\frac{2}{y}\right)}+\frac{3}{2}=\frac{9}{2}\)

\(\Rightarrow x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)

Đẳng thức xảy ra khi:

Ta có: \(\frac{x}{2}=\frac{1}{2x}\Rightarrow\left(2x.x\right)=\left(2.1\right)\Rightarrow2x^2.2\Rightarrow x=1\)( Thỏa mãn ) ( vì x là một số thực dương )

Ta có: \(\frac{y}{2}=\frac{2}{y}\Rightarrow\left(y.y\right)=\left(2.2\right)\Rightarrow y^2=4\Rightarrow y=2\)( thỏa mãn ) ( vì y là một số thực dương )

Mà: \(x+y=1+2=3\)( thỏa mãn đề bài \(x+y\ge3\))

Vậy đẳng thức \(x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)khi x = 1 và y = 2 

bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2019 lúc 14:03

a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)

\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)

\(\Rightarrow x=-\frac{1}{2}\)

b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)

\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)

\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)

\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)

"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa
bach nhac lam
23 tháng 11 2019 lúc 12:54

Nguyễn Trúc Giang, Duy Khang, Vũ Minh Tuấn, Võ Hồng Phúc, tth, No choice teen, Phạm Lan Hương,

Nguyễn Lê Phước Thịnh, @Nguyễn Việt Lâm, @Akai Haruma

giúp em vs ạ! Cần trước 5h chiều nay ạ

Thanks nhiều

Khách vãng lai đã xóa
tran thu ha
Xem chi tiết
alibaba nguyễn
5 tháng 5 2017 lúc 19:20

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

Cô Hoàng Huyền
6 tháng 5 2017 lúc 11:00

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

Vũ Tường Minh
5 tháng 5 2017 lúc 18:00

BALABOLO

TK NHA

Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 8:46

\(y=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{2\left(x-1\right)}{2\left(x-1\right)}}+\frac{1}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(\frac{x-1}{2}=\frac{2}{x-1}\Rightarrow x=3\)

\(y=\frac{5\left(3x-1\right)}{9}+\frac{5}{3x-1}+\frac{5}{9}\ge2\sqrt{\frac{25\left(3x-1\right)}{9\left(3x-1\right)}}+\frac{5}{9}=\frac{35}{9}\)

Dấu "=" xảy ra khi \(x=\frac{4}{3}\)

\(y=-2+\frac{2}{1-x}+\frac{3}{x}\ge-2+\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{1-x+x}=3+2\sqrt{6}\)

Dấu "=" xảy ra khi \(\frac{1-x}{\sqrt{2}}=\frac{x}{\sqrt{3}}\Rightarrow x=3-\sqrt{6}\)

\(y=x+\frac{9}{x}+2020\ge2\sqrt{\frac{9x}{x}}+2020=2026\)

Dấu "=" xảy ra khi \(x=3\)

Khách vãng lai đã xóa
Witch Rose
Xem chi tiết
Trần Hải Linh
Xem chi tiết
Nguyễn Linh Chi
2 tháng 11 2019 lúc 11:35

+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)

+) Lỗi lớn: Dấu bằng xảy ra:  \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )

Nhưng mà thử vào chọn x= 1=>  A = 3 > 1. Nên bài này sai. 

Làm lại nhé!

A = | x - 2 | + | 2 x - 3  | + | 3  x - 4 |

 = | x - 2 | + | 2 x - 3  | + 3 | x - 4/3 |

= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |

= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x  | + | 2x - 8/3 | )

\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |

= 2/3 + 1/3 = 1

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)

Khách vãng lai đã xóa