Giúp mình nhanh nha!!!!!!Thanks các bạn nhiêuuuuu
Cho ab+bc+ca=0: a.b.c khác 0
Tính GTBT của P=\(\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Cho phân thức A=\(\frac{4bc-a^2}{bc+2a^2}\);B=\(\frac{4ca-b^2}{ca+2b^2}\);C=\(\frac{4ab-c^2}{ab+2c^2}\)
Cmr nếu a+b+c=0 a khác b khác c thì A.B.C=1
Bạn nào giải nhanh đúng mình tick cho nha ^ ^.
Cho a, b, c khác 0:
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
tìm M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
GIÚP MÌNH VỚI NHA!!!!!!!!!!!!!!!!
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{1}{\frac{1}{b}+\frac{1}{c}}=\frac{1}{\frac{1}{c}+\frac{1}{a}}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
Hay a =b= c ; hỏi gì nữa không?
Cho a, b, c là ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(các giả thiết đều có nghĩa)
Tính giá trị của biểu thức:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)
Tham khảo: Câu hỏi của Đậu Đình Kiên
Cho \(a+b+c=0\) , Đặt \(A=\frac{4bc-a^2}{bc+2a^2},B=\frac{4ca-b^2}{ca+2b^2},C=\frac{4ab-c^2}{ab+2c^2}\)
Chứng minh rằng : \(A.B.C=1\)
Giúp mk vs thanks mn
Cho a,b,c là các số dương. CMR \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)Mọi người giúp em với ạ!
Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)
\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)
\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
Nhân phá và rút gọn 2 vế:
\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)
Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho các số thực a,b,c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) Tính \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Mình đang cần gấp. Giúp mình với
Em tham khảo link:Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Ta có bổ đề
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
ÁP DỤNG BỔ ĐỀ VÀO P ta có
\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc.\frac{3}{abc}=3\)
Vậy P=3
Cho a,b,c là 3 số khác 0 thõa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) (với giả thuyết các số đều có nghĩa)
Tính giá trị của biểu thức \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Ai giúp mình với, làm ơn~!
Bài này tui làm rùi mà.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{1}{\frac{1}{b}+\frac{1}{c}}=\frac{1}{\frac{1}{c}+\frac{1}{a}}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Leftrightarrow a=b=c\)
\(\Leftrightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{3a^2}{3a^2}=1\)
https://olm.vn/hoi-dap/detail/24516756398.html
Cho a,b,c là 3 số khác 0 thõa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) (với giả thuyết các số đều có nghĩa)
Tính giá trị của biểu thức \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Ai giúp mình với, làm ơn~!
Cho a, b, c khác 0 thỏa mãn:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
theo bài ra ta có:
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
=> \(\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)
=> \(\frac{abc}{ca+cb}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)
vì a,b,c khác 0 => ca+cb = ab+ac = bc+ba
=> a = b = c
ta có:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
vậy M = 1