A = \(\frac{72^3\cdot54^2}{108^4}\)
B = \(\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
Rút gọn biểu thức:
\(\frac{2^{12}\cdot13+2^{12}\cdot65}{2^{10}\cdot104}+\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
\(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(\Rightarrow\frac{2^{12}.\left(13+65\right)}{2^{10}.104}+\frac{3^{10}.\left(11+5\right)}{3^9.2^4}\)
\(\Rightarrow\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.2^4}{3^9.2^4}\)
\(=\frac{2^2.3}{4}+3\)
\(=3+3=6\)
Hãy so sánh B và C: \(B=\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\) và \(C=\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}\)
B=3^10.11+3^10.5/3^9.2^4
= 3^10( 11+5)/3^9.16
= 3^10.16/3^9.16
= 3^10/3^9
= 3
Vậy B = 3 (1)
C = 2^10.13+2^10.65/2^8.104
= 2^10(13+65)/2^8.2^2.26
= 2^10.78/2^10.26
= 78/26
= 3
Vậy C = 3 (2)
Từ (1) v (2) suy ra B=C
\(\frac{3^{10}\cdot11+3^5\cdot5}{3^9\cdot2^4}\)
Help me!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{3^{10}\times11+3^5\times5}{3^9\times2^4}\)
\(\Rightarrow\)\(\frac{3^5\left(3^5\times11+5\right)}{3^5\times3^4\times2^4}\)
\(\Rightarrow\frac{3^5\times11+5}{\left(3\times2\right)^4}\)
\(\Rightarrow\frac{3^5\times11+5}{6^4}\)
\(\Rightarrow\frac{3^5\times11}{6^4}+\frac{5}{6^4}\)
\(\Rightarrow\frac{3^5\times11}{2^4\times3^4}+\frac{5}{6^4}\)
\(\Rightarrow\frac{3\times11}{16}+\frac{5}{1295}\)
\(\Rightarrow\frac{33}{16}+\frac{5}{1295}\)
\(\Rightarrow\frac{8563}{4144}\)
Bài 22 : a, Cho A = 4 + 22 + 23 + 24 + ... + 220
Hỏi A có chia hết cho 128 không ?
b, Tính giá trị biểu thức
\(\frac{2^{12}\cdot13+2^{12}\cdot65}{2^{10}\cdot104}+\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
b)
\(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{2^{10}\left(4.13+4.65\right)}{2^{10}.104}+\frac{3^9\left(11.3+5.3\right)}{3^9.16}\)
\(=\frac{312}{104}+\frac{48}{16}=3+3=6\)
a) \(A=4+2^2+2^3+2^4+....+2^{20}\)
\(\Rightarrow2A=2^3+2^3+2^4+.....+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^3+2^4+....+2^{21}\right)-\left(2^2+2^3+2^4+...+2^{20}\right)\)
\(\Rightarrow A=2^3+2^{21}-\left(2^2+2^2\right)\)
\(\Rightarrow A=2^{21}\)
\(\text{Vì }2^{21}⋮2^7\Rightarrow A⋮128\)
b) \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{2^{12}\left(13+65\right)}{2^{10}.2^3.13}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)
\(=\frac{2^{12}.78}{2^{13}.13}+\frac{3^{10}.16}{3^9.16}=\frac{6}{2}+\frac{3^{10}}{3^9}\)
\(=3+3=6\)
Bài 4: Tính hợp lý
A=\(\frac{4}{1\cdot2}+\frac{4}{3\cdot5}+.......+\frac{4}{20\cdot11\cdot2013}\)
Bài 5: So sánh với 1:
A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{49\cdot50}\)
Bài 5:
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}< 1\)
Vậy A<1.
Bài 4: Bn ghi nhầm đề rồi.
Đề đúng: \(A=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2011.2013}\)
\(\frac{1}{2}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\)
\(\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\)
\(\frac{1}{2}A=1-\frac{1}{2013}\)
\(A=2.\frac{2012}{2013}=\frac{4024}{2013}\)
Ai giải hộ phép tính này với : \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{10\cdot11\cdot12}\)
\(A\frac{6^{10}-3^9\cdot2^8\cdot5}{27^3\cdot4^5+16^3\cdot9^4}\)
\(A=\frac{6^{10}-3^9.2^8.5}{27^3.4^5+16^3.9^4}\)
\(=\frac{3^{10}.2^{10}-3^9.2^8.5}{\left(3^3\right)^3.\left(2^2\right)^5+\left(2^4\right)^3.\left(3^2\right)^4}\)
\(=\frac{3^{10}.2^{10}-3^9.2^8.5}{3^9.2^{10}+2^{12}.3^8}\)
\(=\frac{3^9.2^8.\left(3.2^2-1.1.5\right)}{3^8.2^{10}.\left(3.1+2^2\right)}\)
\(=\frac{3^9.2^8.7}{3^8.2^{10}.7}\)
\(=\frac{3}{2^2}=\frac{3}{4}\)
Bài làm :
\(A=\frac{6^{10}-3^9.2^8.5}{27^3.4^5+16^3.9^4}\)
\(=\frac{\left(2.3\right)^{10}-3^9.2^8.5}{\left(3^3\right)^3.\left(2^2\right)^5+\left(2^4\right)^3.\left(3^2\right)^4}\)
\(=\frac{2^{10}.3^{10}-3^9.2^8.5}{3^9.2^{10}+2^{12}.3^8}\)
\(=\frac{2^8.3^9.\left(2^2.3-5\right)}{3^8.2^{10}.\left(3+2^2\right)}\)
\(=\frac{3.7}{2^2.7}\)
\(=\frac{3}{4}\)
Học tốt
Bài 1: Rút gọn rồi quy đồng
\(\frac{4\cdot5+4\cdot11}{8\cdot7-4\cdot3}\) \(\frac{-15\cdot8+10\cdot7}{5\cdot6+20\cdot3}\)và \(\frac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^3\cdot11}\)
\(\frac{16}{11},-\frac{5}{9},\frac{10}{539}\)
(\(\frac{1}{1\cdot2}\)+ \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{9\cdot10}\)) *10 -x = 10
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot10-x=10\)10
\(\left(1-\frac{1}{10}\right)\cdot10-10=x\)
\(x=10\cdot\left(1-\frac{1}{10}-1\right)\)
\(x=10\cdot-\frac{1}{10}=-1\)
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right).10-x=10\)
\(\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right].10-x=10\)
\(\left[1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\right].10-x=10\)
\(\left[1-\frac{1}{10}\right].10-x=10\)
\(\frac{9}{10}.10-x=10\)
\(9-x=10\)
\(x=9-10\)
\(x=-1\)
~ Hok tốt ~
\(=>\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot10-x=10\)
\(=>\left(1-\frac{1}{10}\right)\cdot10-x=10\)
\(=>\frac{9}{10}\cdot10-x=10\)
\(=>x=9-10=-1\)