Giải : a) 8x^2 + 2x - 1 = 0
b) x^4 - 4x^2 -5 = 0
*** Lưu ý : câu a giải denta
Giải bất phương trình
a)x\(^2\)-2x=0
b)\(\dfrac{x+1}{x-2}\)-\(\dfrac{5}{x+2}\)=\(\dfrac{12}{x^2-4}\)+1
c)/x-1/-/3x-5/=0
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b.\(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(ĐK:x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12+\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12+\left(x^2-4\right)\)
\(\Leftrightarrow x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\left(ktm\right)\)
Vậy pt vô nghiệm
\(a,x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\dfrac{x+1}{x-2}-\dfrac{5}{x-2}=\dfrac{12}{x^2-4}+1\) (ĐKXĐ : x ≠ 2 ; x ≠ -2)
\(\Rightarrow\left(x+1\right)\left(x+2\right)-5\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x^2+3x+2-5x-10=12+x^2+2x-2x+4\)
\(\Leftrightarrow2x=24\)
\(\Leftrightarrow x=12\left(N\right)\)
câu c chưa học :vv
a)
<=> x (x-2 ) = 0
<=> x =0
x = 2
b)
đkxđ : x khác 2 , x khác -2
<=> \(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{12}{x^2-4}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\dfrac{x^2+3x+2}{....}-\dfrac{5x-10}{....}-\dfrac{12}{...}+\dfrac{x^2-4}{....}=0\)
<=> \(x^2+3x+2-5x+10-12+x^2-4=0\)
<=> \(2x^2-2x-4=0\)
<=> x =2 (ktm)
Vậy..
a)giải phương trình
(8x+4x^2-1)(x^2+ 2x+1)=4(x^2+ x+1)
b)cho 2 số dương a,b thỏa mãn a+b#0.cmr a^2+b^2+(ab+1/a+b)»2
giải các phương trình sau:
1)4+2x.(2x+4)=-x
2)(2x-3)^2=2x-3
3)x^2-9x+20=0
4)x^2-1+2.(x+1)=0
5)16x^2-8x+1=4.(x+3).(4x-1)
6)27x^2.(x+3)-12.(x^2+3x)=0
\(4+2x\left(2x+4\right)=-x\)
\(4+2x.2x+8x=-x\)
\(4x+8x+x=-4\)
\(13x=-4\)
\(x=-\frac{4}{13}\)
Vậy pt có nghiệm là { -4/13 }
2) mình nghĩ thế này
(2x-3)^2=2x-3
Đẻ 2 cái trên = nhau thfi
2x-3=1
=> x=2
Cho biểu thức P = \(\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)
Sau khi rút gọn P = \(\frac{x^4+1}{2x+1}\). Tìm các giá trị của x để P = 6 ( giải chi tiết dùm mk vs)
\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)
\(=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(2x-1\right)\left(4x^2-2x+1\right)+2\left(2x-1\right)\left(4x^2+2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(2x-1\right)\left(4x^2-2x+1\right)\left(x^4-1+2\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{x^4+1}{2x+1}\)
giải phương trình
a) x - \(\sqrt{x-1}\) -3 = 0
b)\(\sqrt{4x^2+8x+4}\) = x - 3
c) 2x + 5 +\(2\sqrt{2x+5}\) = 13
giải các phương trình sau:
a. \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c. \(\sqrt{\dfrac{3x-2}{x+1}}=3\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
Giải các bất phương trình sau:
a) -2x2 + 3x - 5 > 0
b) 3x2 - 7x - 12 < 0
c) x2 - 213x + 445 > 0
Chú ý: lời giải rõ ràng, mình cần trước 19h tối nay
Giải pt = cách đưa về dạg pt tích: +) (x^2+x+1)(6-2x)=0
+) (8x-4)(x^2+2x+2)=0
giải các phương trinh sau a,8x+3(x+1) > 5x- (2x -6); b,2x( 6x-1) > (3x-2)(4x+3)