Không tính giá trị. So sánh:
2014/2015 + 2015/2016 + 2016/2014 với 3
Không tính giá trị. So sánh:
2014/2015 + 2015/2016 + 2016/2014 với 3
Cho M=2013/2014+2014/2015+2015/2016+2016/2013.So sánh giá trị M với 4.
Cho M=2013/2014+2014/2015+2015/2016+2016/2013.So sánh giá trị M với 4.
Các phân số như 2013/2014 ; 2014 /2015 ; 2015 / 2016
Nếu chuyển thành số thập phân thì được 0,999 ( chỉ lấy đến 3 chữ số )
2016 / 2013 > 1 và khi chuyển thành số thập phân 1,001 ( chỉ lấy đên 3 chữ số ở phần thập phân )
M có giá trị nhỏ nhất là :
0,999 x 3 + 1,001 = 3,998
Với giá trị nhỏ nhất thì M < 4
Nhưng phân số 2013 / 2104 < 2014 / 2015 < 2015 / 2016
Nếu tính kĩ phần thập phân hơn ta sẽ có giá trị lớn nhất của M là :
0,999 x 3 + 1,001 + 0,1 + 0,1 = 4,198
Với giá trị lớn nhất thì M > 4
\(M=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)
\(M=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)
\(M=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
có \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\Rightarrow\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)
=> M>4
Các phân số như 2013/2014 ; 2014 /2015 ; 2015 / 2016
Nếu chuyển thành số thập phân thì được 0,999 ( chỉ lấy đến 3 chữ số )
2016 / 2013 > 1 và khi chuyển thành số thập phân 1,001 ( chỉ lấy đên 3 chữ số ở phần thập phân )
M có giá trị nhỏ nhất là :
0,999 x 3 + 1,001 = 3,998
Với giá trị nhỏ nhất thì M < 4
Nhưng phân số 2013 / 2104 < 2014 / 2015 < 2015 / 2016
Nếu tính kĩ phần thập phân hơn ta sẽ có giá trị lớn nhất của M là :
0,999 x 3 + 1,001 + 0,1 + 0,1 = 4,198 ( đây là tớ chỉ cộng với 0,1 thôi )
Với giá trị lớn nhất thì M > 4
Không tính giá trị hãy so sánh:
\(\frac{2014}{2015}\) + \(\frac{2015}{2016}\) + \(\frac{2016}{2014}\) với 3
Ta có : \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)
Mà : \(\left(\frac{2014}{2015}+\frac{1}{2014}\right)>1;\left(\frac{2015}{2016}+\frac{1}{2014}\right)>1;\frac{2014}{2014}=1\)
Nên : \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)\(>1+1+1=3\)
Ta có:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)\)\(+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)
Mà:\(\left(\frac{2014}{2015}+\frac{1}{2014}\right)>1:\left(\frac{2015}{2016}+\frac{1}{2014}\right)>\)\(1:\frac{2014}{2014}=1\)
Nên:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)\)\(+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}>1+1+1=3\)
so sánh 2014/2015 và 2015+2015/2016 với 2014+2015/2015+2016
so sánh:2014+2015/2015+2016 và 2014/2015+2015/2016
so sánh A=2013/2014 + 2014/2015 + 2015/2016 và B=2013+2014+2015/2014+2015+2016
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)
so sánh P và Q biết : P= 2014/2015 + 2015/2016 + 2016/2017 và Q = 2014 + 2015 +2016/ 2015 +2016 + 2017
Cho \(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\) .Hãy so sánh A với 3
Tạm thời chỉ nghĩ ra được cách này -_-
Ta có :
\(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\)
\(A=\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2014+2}{2014}\)
\(A=\frac{2015}{2015}-\frac{1}{2015}+\frac{2016}{2016}-\frac{1}{2016}+\frac{2014}{2014}+\frac{2}{2014}\)
\(A=1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{2}{2014}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2015}+\frac{1}{2016}-\frac{2}{2014}\right)\)
\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]\)
Lại có :
\(\frac{1}{2015}< \frac{1}{2014}\)
\(\frac{1}{2016}< \frac{1}{2014}\)
\(\Rightarrow\)\(\frac{1}{2015}+\frac{1}{2016}< \frac{1}{2014}+\frac{1}{2014}\)
\(\Rightarrow\)\(\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)< 0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]>3\)
Vậy \(A>3\)
Chúc bạn học tốt ~