5.2/ Tính hợp lý tổng sau: A= 1/3.5+1/5.7+1/7.9+...+1/13.15
Tính hợp lý tổng sau: A= 1/3.5+1/5.7+1/7.9+...+1/13.15
Ta có: \(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{13.15}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(\Rightarrow A=\frac{4}{15}:2=\frac{2}{15}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{13.15}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\)
\(2A=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(\Rightarrow A=\frac{4}{15}:2=\frac{2}{15}\)
Tính: \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+..+\frac{1}{13.15}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}.\frac{4}{15}=\frac{2}{15}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)
\(A=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...\frac{1}{13.15}\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\cdot\frac{4}{15}\)
\(=\frac{2}{15}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{1}{13.15}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\)4/15
=2/15
Gọi \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
=>\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{5}{15}-\frac{1}{15}\)
\(=\frac{4}{15}\)
Mà A = 2A : 2
=>\(A=\frac{4}{15}:2\)
\(=\frac{4}{15}\cdot\frac{1}{2}\)
\(=\frac{4}{30}=\frac{2}{15}\)
Thực hiện phép tính một cách hợp lý: \(-\frac{2}{1.3}-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-\frac{2}{9.11}-\frac{2}{11.13}-\frac{2}{13.15}\)
\(-\frac{2}{1.3}-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-\frac{2}{9.11}-\frac{2}{11.13}-\frac{2}{13.15}\)
\(=\left(-\frac{2}{1.3}\right)+\left(-\frac{2}{3.5}\right)+\left(-\frac{2}{5.7}\right)+\left(-\frac{2}{7.9}\right)+\left(-\frac{2}{9.11}\right)+\left(-\frac{2}{11.13}\right)+\left(-\frac{2}{13.15}\right)\)
\(=\left(-2\right).\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\right)\)
\(=\left(-2\right).\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\left(-2\right).\left(1-\frac{1}{15}\right)=\left(-2\right).\frac{14}{15}\)
\(=-\frac{28}{15}\)
1)Tính:
P= 2/3.5+2/5.7+2/7.9+2/9.11+2/11.13+2/13.15
2) Thực hiện phép tính:
a) 0,2:1/3/5+80%
b) 0,5:5/4-2/1/5
1) P = 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 + 2/13.15
P= (1/3-1/5) + (1/5-1/7) + (1/7-1/9) + (1/9-1/11) + (1/11-1/13) + (1/13-1/15)
P=1/3-1/15= 4/15
2) a/ 0,2:1+3/5+80%
= 2/10:8/5+8/10
= 2/10.5/8+8/10
= 1/8 + 4/5 = 5/40 + 32/40 = 37/40
b/ 0,5:5/4-2+1/5
= 5/10:5/4-11/5
= 5/10.4/5-11/5
=2/5-11/5 = -9/5
Tính các tổng sau bằng phương pháp hợp lí nhất:
A= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/49.50
B= 2/3.5 + 2/5.7 + 2/7.9+...+ 2/37.39
A=1/1-1/2+1/2-1/3+1/3-1/4+....+1/49-1/50
A=1/1-1/50
A=49/50
Vay A=49/50
B=1/3-1/5+1/5-1/7....+1/37-1/39
B=1/3-1/39
b=36/117
B=4/13
Tính tổng 101 số hạng đầu tiên của dãy sau:
1/3.5 ; 1/5.7 ; 1/7.9 ; 1/ 9.11 ; ...
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{203.205}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{203.205}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{203}-\dfrac{1}{205}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{205}\right)\)
\(=\dfrac{1}{2}.\dfrac{202}{615}\)
\(=\dfrac{101}{615}\)
Chúc bạn học tốt!
1.Tính hợp lí
a/ 2/3.5 + 2/5.7 + 2/7.9 +...+2/97.99
b/ 1/3.5 + 1/5.7 + 1/7.9 +...+1/97.99
c/1/18 + 1/54 + 1/108 +...+1/990
2.Chứng minh rằng: 1/14 + 1/42 + 1/43 +...+1/79 + 1/80 > 7.12
Tính nhanh tổng sau:\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{87}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\frac{86}{267}=\frac{43}{267}\)
~~~
Đáp số to quá, tớ không chắc là mình đúng đâu.
#Sunrise
=1/3-1/5+1/5-1/7+1/7-1/9+.....+1/87-1/89
=1/3-1/89
=86/267