Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hải Đăng
Xem chi tiết
Nguyễn Kim Ngân
20 tháng 4 2020 lúc 16:03

khó quá làm sao mà trả lời đc

Khách vãng lai đã xóa
Selina Joyce
20 tháng 4 2020 lúc 16:15

Vắt óc đi

Khách vãng lai đã xóa
Nguyễn Kim Ngân
20 tháng 4 2020 lúc 16:56

tự đầu mình vắt óc mà suy nghĩ

Khách vãng lai đã xóa
Đỗ Phương Thảo
Xem chi tiết
Chu Công Đức
20 tháng 2 2020 lúc 9:16

\(ĐKXĐ:x\ne\pm2\)

\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(=\left[\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right]\)

\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}=\frac{2x}{\left(x+2\right)^2}.\frac{-\left(x-2\right)\left(x+2\right)}{x}\)

\(=\frac{-2\left(x-2\right)}{x+2}\)

Khách vãng lai đã xóa
Bùi Anh Tuấn
20 tháng 2 2020 lúc 9:17

\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2+x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{2x}{\left(x+2\right)^2}\cdot\frac{\left(x-2\right)\left(x+2\right)}{x+4}\)

\(\Leftrightarrow\frac{2x^2-4x}{\left(x+2\right)\left(x+4\right)}\)

Khách vãng lai đã xóa
mạnh
Xem chi tiết
Hoàng Thị Lan Hương
26 tháng 7 2017 lúc 14:56

Ta có \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\)

\(=\frac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x-2+x+2\right)\left(x-2-x-2\right)}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{2x}{\left(x+2\right)\left(x-2\right)}\)

\(\frac{-4.2x}{\left(x+2\right)^2\left(x-2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{2x}=\frac{-4}{\left(x+2\right)\left(x-2\right)}\)

Lê Thị Hồng Thảo
Xem chi tiết
Phước Nguyễn
18 tháng 11 2015 lúc 20:55

\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{1}{x+y}-\frac{3xy}{x^3-y^3}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{1.\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2\left(x-y\right)}{x^2+xy+y^2}\)

Lê Thị Hồng Thảo
Xem chi tiết
asuna x kirito
Xem chi tiết
Diệp Anh
Xem chi tiết
Nhók Me
14 tháng 11 2016 lúc 7:41

quy đồng rồi cộng thôi thánh, làm biếng thế

Nhật Khoa
Xem chi tiết
Cold Wind
13 tháng 11 2016 lúc 19:26

Tự trình bày nha

a) MC : x^3 +1 

KQ: (x+1)^3 / (x^3 +1)

b) MC: 2x-4x^2 

KQ: -1/(2x)

Xuân Trà
Xem chi tiết