b/ \(\frac{5.7.13}{26+5.13}\)
\(\frac{5.7.13}{26+5.13}\)= ?
\(\frac{5.7.13}{26+5.13}=\frac{5.7.13}{13.2+5.13}=\frac{5.7.13}{13.\left(2+5\right)}=\frac{13.7.5}{13.7}=\frac{5}{1}=5\)
1b/ 5.7.13/26+5.13
\(\frac{5.7.13}{26+5.13}\) \(=\frac{7}{26}\)
\(\frac{5.7.13}{26+5.13}=\frac{5.7.13}{2.13+5.13}=\frac{5.7.13}{\left(2+5\right).13}=\frac{5.7.13}{7.13}=5\)
b/ \(\frac{5.7.133}{26+5.13}\)
b)\(\frac{5.7.133}{26+5.13}\)
Ta có:\(\frac{5.7.19.7}{13.2+5.13}\)
\(\frac{5.7.7.19}{13.\left(2+5\right)}\)
\(\frac{5.7.7.19}{13.7}\)
\(\frac{5.7.19}{13}=\frac{35.19}{13}\)
Bt1 Tính hợp lí
a) 3/7.9/26-1/14.1/13
b)3/5.13/46-1/10.16/23
\(\frac{3}{7}.\frac{9}{26}-\frac{1}{14}.\frac{1}{13}\)
\(=\frac{27}{182}-\frac{1}{182}\)
\(=\frac{1}{7}\)
\(\frac{3}{5}.\frac{13}{46}-\frac{1}{10}.\frac{16}{23}\)
\(=\frac{6}{10}.\frac{13}{46}-\frac{1}{10}.\frac{16}{23}\)
\(=\frac{1}{10}.\frac{78}{46}-\frac{1}{10}.\frac{16}{32}\)
\(=\frac{1}{10}\left(\frac{78}{46}-\frac{32}{46}\right)\)
\(=\frac{1}{10}.1=\frac{1}{10}\)
\(\frac{-11^5.13^7}{11^5.13^8}\) bài rút gọn
Rút gọn:
\(\frac{-11^5.13^7}{11^5.13^8}\)
\(\frac{-11^5.13^7}{11^5.13^8}=\frac{-11^4.\left(-11\right).13^7}{11^4.11.13^7.13}=\frac{-11}{11.13}=\frac{-11}{143}\)
bằng -1/13
ko tik xui nguyên năm gán chịu
Rút gọn phân số
\(\frac{11^5.13^7}{10^5.13^8}\)
\(\frac{11^5.13^7}{10^5.13^8}=\frac{11^5.13^7}{10^5.13^7.13}=\frac{11^5}{10^5.13}=\frac{11^5}{10^5}:13=\left(\frac{11}{10}\right)^5:13\)
mình chỉ rút gọn đc đến đây thui, còn lại mình ....... ko biết
\(\frac{-11^5.13^7}{11^5.13^8}\) CÂU NAYD LM NHƯ NÀO Ạ
MỌI NG GIÚP MIK VỚI
\(\frac{-11^5.13^7}{11^5.13^8}=-\frac{11^5.13^7}{11^5.13^7.13}=-\frac{1}{13}\)
\(\frac{-1}{3}\) KS NHA
= -115 * 137 / 115 * 137 * 13 = -1/13
Rút gọn phân số:
\(\frac{\left(-11\right)^5.13^7}{11^5.13^8}\)
Ai nhanh nhất mk tick cho, ai tl rùi thì kb với mk nha^^
\(\frac{\left(-11\right)^5.13^7}{11^5.13^8}=\frac{\left(-11\right)^5.13^7}{11^5.13^7}.\frac{1}{13}=-1.\frac{1}{13}=-\frac{1}{13}\)
(-11)5x137/115.138=-1/138
Chúc bạn học giỏi nha!!!
\(\frac{\left(-1\right).1}{1.13}=\frac{\left(-1\right)}{13}\)