giải hpt
\(x+y\sqrt{xy}=14\)
\(x^2+y^2+xy=84\)
giải hpt: \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left(y+\sqrt{xy}+x-x^2\right)=4\end{matrix}\right.\)
Giải hpt: \(\hept{\begin{cases}x^2-y\sqrt{xy}=36\\y^2-x\sqrt{xy}=72\end{cases}}\)
Từ HPT (=) căn(x) . [căn(x)^3 - căn(y)^3] = 36 (1)
căn(y) . [căn(y)^3 - căn(x)^3] = 72 (2)
từ (1) và (2) =) căn(y) . [căn(y)^3 - căn(x)^3] = 2.căn(x) . [căn(x)^3 - căn(y)^3]
(=) [căn(x)^3 - căn(y)^3] . [2.căn(x) + căn(y)] = 0
tự giải phần còn lại
chúc bn hc tốt
Giải hpt: \(\hept{\begin{cases}x^2-y\sqrt{xy}=36\\y^2-x\sqrt{xy}=72\end{cases}}\)
Giải hpt: \(\left\{{}\begin{matrix}x^2-y\sqrt{xy}=36\\y^2-x\sqrt{xy}=72\end{matrix}\right.\)
Giải hpt:
\(\hept{\begin{cases}xy+6y\sqrt{x-1}+12y=4\\\frac{xy}{1+y}+\frac{1}{xy+y}=\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}\end{cases}}\)
giải HPT \(\hept{\begin{cases}x^2+xy^2-xy-y^3=0\\2\sqrt{y}-2\left(x^2+1\right)-3\sqrt{x}\left(y+1\right)-y=0\end{cases}}\)
bạn y nhân tạo của mũ a rồi cộng vào là ra được kết quả thôi mình thấy dễ mà
Trả lời :
Bn Lê Thanh Vân bn y ở đâu ra ??
- Hok tốt !
^_^
Giải HPT sau:
\(\hept{\begin{cases}4\sqrt{x-1}-xy\sqrt{y^2+4}=0\\\sqrt{x^2-xy^2+1}+3\sqrt{x-1}=xy^2\end{cases}}\)
giải hpt x+y+z=6 và xy+yz-zx=7 và x^2+y^2+z^2=14
giải hpt x+y+z=6 và xy+yz-zx=7 và x^2+y^2+z^2=14
x+y+z=6 (1) => (x + y + z)2 = 36 (4)
xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)
x2+y2+z2=14 (3)
Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2
Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:
y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3
Với y = 3 => x+ z = 9/3 = 3
Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1
Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)
x+y+z=6 (1) => (x + y + z)2 = 36 (4)
xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)
x2+y2+z2=14 (3)
Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2
Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:
y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3
Với y = 3 => x+ z = 9/3 = 3
Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1
Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)