2/1×3+2/3×5+.......+2/99×101
5/1×3+5/3×5+5/5×7+.......+5/99×101
Bài tập *
a) 2/1×3 + 2/3×5 + 2/5×7 + ...............+ 2/99×101
b) 5/1×3 + 5/3×5 + 5/ 5×7 + ................ + 5/99×101
Giúp mk bài này nhé mk
\(\frac{2}{1.2}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Tính B=1*3+5*7+9*11+...+97*101
C=1*3*5-3*5*7+5*7*9-....-97*99*101
D=1*99+3*97+5*95+...+49*51
E=1*3^3+3*5^3+5*7^3+...+49*51^3
F=1*99^2+2*98^2+3*97^2+...+49*51^2
cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
C= 4+44+444+......+4444444444
D=5+55+555+........+5555555555
E=1*3^2+3*5^2+51*7^2+.....+97*99^2
F=1*3*5-3*5*7+5*7*9-7*9*11+.......-97*99*101
Ta có:
\(C= 4+44+444+......+4444444444\)
\(C= 4.(10.1+9.10+8.100+7.1000+...+1.1000000000\)
\(C= 4.(100+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000)\)
\(C=4.12345678900\)
\(C=4938271600\)
Tương tự.
Tính tổng
A, 2/1*3+2/3*5+2/5*7+...+2/99.101
B,5/1*3+5/3*5+5/5*7*...+5/99*101
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
\(B=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(B=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\frac{100}{101}\)
\(B=\frac{250}{101}\)
S=1/1*2+1/2*3+1/3*4+...+1/99*100
S=1/1*3+1/3*5+1/5*7+....+1/99*101
a, S= 1/1*2 + 1/2*3 + 1/3*4 +...+1/99*100
S= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
S= 1/1 - 1/100
S= 100/100 - 1/100
S= 99/100
b, S= 1/1*3 + 1/3*5 + 1/5*7 +...+1/99*101
S= 1/2* (2/1*3 + 2/3*5 + 2/5*7 +...+ 2/99*101)
S= 1/2* (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/99 - 1/101)
S= 1/2* (1/1 - 1/101)
S= 1/2* (101/101 - 1/101)
S= 1/2* 100/101
S= 50/101
Chúc bạn học tốt nha
2/1*3+2/3*5+2/5*7+...+2/99*101 = ?
2/1*3+2/3*5+2/5*7...+2/99*101
=(1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/99-1/101)
=1-1/101
=100/101
đúng đấy mình làm ùi