Những câu hỏi liên quan
Nguyễn Thành Phát
Xem chi tiết
Nguyễn Thiều Công Thành
16 tháng 7 2017 lúc 22:32

bn tìm đề thi hsg tỉnh thanh hóa lớp 9 năm nào đó là thấy

bài này dài,ngại làm

đặt là được

Thắng Nguyễn
19 tháng 7 2017 lúc 16:25

Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath

Nguyễn Thị Ngọc Quỳnh
Xem chi tiết
Trần Lâm Thiên Hương
Xem chi tiết
Yim Yim
21 tháng 5 2018 lúc 23:27

Dễ dàng chứng minh được \(y+z\le\sqrt{\frac{\left(y^2+z^2\right)}{2}}\Rightarrow y+z\le\frac{b}{\sqrt{2}}\)

đặt \(\sqrt{x^2+y^2}=a;\sqrt{y^2+z^2}=b;\sqrt{z^2+x^2}=c\Rightarrow\)\(\hept{\begin{cases}a+b+c=6\\a,b,c>0\end{cases}}\)

\(P\ge\frac{a^2+c^2-b^2}{2\sqrt{2}b}+\frac{a^2+b^2-c^2}{2\sqrt{2}c}+\frac{c^2+b^2-a^2}{2\sqrt{2}a}\)\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{b^2}{a}-\left(a+b+c\right)\right)\)

\(\ge\frac{1}{2\sqrt{2}}\left(\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\left(a+b+c\right)\right)=\frac{1}{2\sqrt{2}}\left(2\left(a+b+c\right)-\left(a+b+c\right)\right)\)

\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)=\frac{1}{2\sqrt{2}}\cdot6=\frac{3}{\sqrt{2}}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\)

PaiN zeD kAmi
22 tháng 5 2018 lúc 0:18

\(y+z\le\frac{\sqrt{z^2+x^2}}{\sqrt{2}}\Leftrightarrow\sqrt{2}+\sqrt{2}\le\sqrt{2}.\)  " thay căn 2 "

yim yim sao t thay số vào thì cái bdt của m lại sai ???? 

bài m sai rồi hahah

Yim Yim
22 tháng 5 2018 lúc 14:47

\(\left(x+y\right)\le\sqrt{2\left(x^2+y^2\right)}\)

Ngọc Mai
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 11 2016 lúc 18:06

Áp dụng BĐT \(\sqrt{a^2+b^2}\ge\frac{\sqrt{2}}{2}\left(a+b\right)\) (bạn tự chứng minh)

Ta có \(P=\frac{\sqrt{x^2+y^2}}{z}+\frac{\sqrt{y^2+z^2}}{x}+\frac{\sqrt{z^2+x^2}}{y}\ge\frac{\sqrt{2}}{2}\left(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\right)\)

\(=\frac{\sqrt{2}}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\ge\frac{\sqrt{2}}{2}\left(2+2+2\right)=3\sqrt{2}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x=y=z\\x,y,z>0\end{cases}}\)

Vậy min P = \(3\sqrt{2}\) khi x = y = z

Ngô Minh Tâm
Xem chi tiết
Trần Hữu Ngọc Minh
16 tháng 10 2017 lúc 23:40

trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)

Đệ Ngô
Xem chi tiết
Nguyễn Minh Đăng
15 tháng 5 2021 lúc 14:57

Áp dụng bất đẳng thức Minkowski ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn VIP 5 sao
19 tháng 5 2021 lúc 21:32

Áp dụng bất đẳng thức Minkowski ta có:

√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2

≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2 

=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2 

≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82

Dấu "=" xảy ra khi: x=y=z=13 

Khách vãng lai đã xóa
Blue Moon
Xem chi tiết
Full Moon
20 tháng 10 2018 lúc 15:06

Áp dung BĐT co- si, ta có:

\(y+z\le\sqrt{2\left(y^2+z^2\right)}\)

D đó:   \(\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

tương tự:   \(\frac{y^2}{z+x}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}},\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

\(\Rightarrow T\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Đặt  :  \(\sqrt{x^2+y^2}=a;\sqrt{y^2+z^2}=b;\sqrt{x^2+z^2}=c\left(a,b,c>0\right)\)

Khi đó:  \(T\ge\frac{1}{2\sqrt{2}}\left(\frac{a^2+c^2-b^2}{b}+\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}\right)\)

\(\Leftrightarrow T\ge\frac{1}{2\sqrt{2}}\left(\left(\frac{\left(a+c\right)^2}{2b}-b\right)+\left(\frac{\left(a+b\right)^2}{2c}-c\right)+\left(\frac{\left(b+c\right)^2}{2a}-a\right)\right)\)

\(\ge\frac{1}{2\sqrt{2}}\left(2\left(a+c\right)-3b+2\left(a+b\right)-3c+2\left(b+c\right)-3a\right)\)

\(\Rightarrow T\ge\frac{1}{2\sqrt{2}}\left(a+b+c\right)=\frac{1}{2}\sqrt{\frac{2017}{2}}\)

Full Moon
20 tháng 10 2018 lúc 22:23

Đặt xong thì suy ra:

\(x^2=\frac{a^2+c^2-b^2}{2}\)

\(y^2=\frac{a^2+b^2-c^2}{2}\)

\(z^2=\frac{b^2+c^2-a^2}{2}\)

Phần sau thì thay vào rồi phân h ra thôi

Full Moon
20 tháng 10 2018 lúc 22:31

\(\frac{\left(a+c\right)^2}{2b}-b=\frac{\left(a+c\right)^2}{2b}+2b-3b\ge2\left(a+c\right)-3b\left(bđtcô-si\right)\)

tống thị quỳnh
Xem chi tiết
Trà My
30 tháng 5 2017 lúc 23:18

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

Trà My
30 tháng 5 2017 lúc 22:56

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 10 2020 lúc 12:40

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

Khách vãng lai đã xóa