Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 11 2019 lúc 6:31

*cách vẽ:

- vẽ đường tròn (O,2cm)

- Từ một điểm A trên đường tròn (O;2cm) đặt liên tiếp các cung bằng nhau có dây căng cung bằng 2cm

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

-Nối AB, BC, CD, DE, EG, GA ta được lục giác đều ABCDEG nội tiếp trong đường tròn (O;2cm)

-kẻ đường kính vuông góc với AB và DE cắt đường tròn lần lượt tại I và L. Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

-kẻ đường kính vuông góc với BC và EG cắt đường tròn lần lượt tại J và M.Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

-kẻ đường kính vuông góc với CD và AG cắt đường tròn lần lượt tại N và K.Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

-Nối AI , IB, BJ, JC, CK, KD, DL, LE, EM, MG, GN, NA đa giác AIBJCKDLEMGN là đa giác đều mười hai cạnh nội tiếp trong đường tròn (O;2cm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2018 lúc 3:21

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ tam giác đều:

Chia đường tròn thành 6 cung bằng nhau như phần a).

Nối các điểm như hình vẽ ta được tam giác đều nội tiếp đường tròn.

* Tính cạnh tam giác :

Gọi cạnh ΔABC đều là a.

Gọi H là trung điểm BC

⇒ HB = a/2

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tam giác ABC là tam giác đều có O là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mà OA = R ⇒ a = R√3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2018 lúc 5:48

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

a)

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ lục giác đều nội tiếp (O; R) :

+ Lấy điểm A trên (O ; R).

+ Vẽ cung tròn (A; R) cắt (O; R) tại B và F => AB = AF = R

+ Vẽ cung tròn (B; R) cắt (O; R) tại C ( khác A) => BC = R

+ Vẽ cung tròn (C; R) cắt (O; R) tại D ( khác B) => CD = R

+ Vẽ cung tròn (D; R) cắt (O; R) tại E ( khác C)=> DE = R

ABCDEF là lục giác đều cần vẽ.

* Tính cạnh: AB = BC = CD = DE = EF = FA = R.

b)

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ hình vuông :

+ Vẽ đường kính AC của đường tròn tâm O.

+ Vẽ đường kính BD ⊥ AC

Tứ giác ABCD có hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên là hình vuông.

Nối A với B ; B với C ; C với D với A ta được hình vuông ABCD nội tiếp đường tròn (O).

* Tính cạnh :

ΔAOB vuông tại O

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

c)

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ tam giác đều:

Chia đường tròn thành 6 cung bằng nhau như phần a).

Nối các điểm như hình vẽ ta được tam giác đều nội tiếp đường tròn.

* Tính cạnh tam giác :

Gọi cạnh ΔABC đều là a.

Gọi H là trung điểm BC

⇒ HB = a/2

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tam giác ABC là tam giác đều có O là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mà OA = R ⇒ a = R√3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 10 2017 lúc 7:34

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ lục giác đều nội tiếp (O; R) :

+ Lấy điểm A trên (O ; R).

+ Vẽ cung tròn (A; R) cắt (O; R) tại B và F => AB = AF = R

+ Vẽ cung tròn (B; R) cắt (O; R) tại C ( khác A) => BC = R

+ Vẽ cung tròn (C; R) cắt (O; R) tại D ( khác B) => CD = R

+ Vẽ cung tròn (D; R) cắt (O; R) tại E ( khác C)=> DE = R

ABCDEF là lục giác đều cần vẽ.

* Tính cạnh: AB = BC = CD = DE = EF = FA = R.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 12 2017 lúc 14:15

 

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ hình vuông :

+ Vẽ đường kính AC của đường tròn tâm O.

+ Vẽ đường kính BD ⊥ AC

Tứ giác ABCD có hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên là hình vuông.

Nối A với B ; B với C ; C với D với A ta được hình vuông ABCD nội tiếp đường tròn (O).

* Tính cạnh :

ΔAOB vuông tại O

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Sách Giáo Khoa
Xem chi tiết
Đặng Phương Nam
12 tháng 4 2017 lúc 16:34

Hình a.

Gọi ai là cạnh của đa giác đều i cạnh.

a) a6= R (vì OA1A2 là tam giác đều)

Cách vẽ: vẽ đường tròn (O;R). Trên đường tròn ta đặt liên tiếp các cung , ,..., mà căng cung có độ dài bằng R. Nối A1 với A2, A2 với A3,…,A6 với A1 ta được hình lục giác đều A1A2A3A4A5A6 nội tiếp đường tròn

b) Hình b

Trong tam giác vuông OA1A2: a2 = R2 + R2 = 2R2 => a4 = R√2

Cách vẽ như ở bài tập 61.

c) Hình c

A1H = R + =

A3H =

A1A3 = a

Trong tam giác vuông A1HA3 ta có: A1H2 = A1A32 – A3H2.

Từ đó = a2 - .

=> a2 = 3R2 => a = R√3

Cách vẽ như câu a) hình a.

Nối các điểm chia cách nhau một điểm thì ta được tam giác đều chẳng hạn tam giác A1A3A5 như trên hình c



Nguyễn Đắc Định
12 tháng 4 2017 lúc 21:14

Hình a.

Gọi ai là cạnh của đa giác đều i cạnh.

a) a6= R (vì OA1A2 là tam giác đều)

Cách vẽ: vẽ đường tròn (O;R). Trên đường tròn ta đặt liên tiếp các cung , ,..., mà căng cung có độ dài bằng R. Nối A1 với A2, A2 với A3,…,A6 với A1 ta được hình lục giác đều A1A2A3A4A5A6 nội tiếp đường tròn

b) Hình b

Trong tam giác vuông OA1A2: a2 = R2 + R2 = 2R2 => a4 = R√2

Cách vẽ như ở bài tập 61.

c) Hình c

A1H = R + =

A3H =

A1A3 = a

Trong tam giác vuông A1HA3 ta có: A1H2 = A1A32 – A3H2.

Từ đó = a2 - .

=> a2 = 3R2 => a = R√3

Cách vẽ như câu a) hình a.

Nối các điểm chia cách nhau một điểm thì ta được tam giác đều chẳng hạn tam giác A1A3A5 như trên hình c

Nguyễn Thị Hồng Nhung
Xem chi tiết
Nguyễn Hòa Bình
22 tháng 3 2016 lúc 16:17

Ta cần chứng minh tam giác MNP là tam giác cân và có một góc bằng \(\frac{\Pi}{3}\)

Giả sử  lục giacs có hướng âm, kí hiệu \(f\) là phép quay vec tơ theo góc \(-\frac{\Pi}{3}\) và M, N. P theo thứ tự là trung điểm FA, BC, DE

Khi đó AB=BO, CD=DO=OC, EF=FO=OE nên các tam giác ABO, CDO, EFO đều và có hướng âm

Suy ra \(f\left(\overrightarrow{AB}\right)=\overrightarrow{AO}\)\(f\left(\overrightarrow{OC}\right)=\overrightarrow{OD}\)\(f\left(\overrightarrow{FO}\right)=\overrightarrow{FE}\)

Từ đó ta có :

\(f\left(\overrightarrow{MN}\right)=f\left(\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{FC}\right)\right)=\frac{1}{2}\left(f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{FC}\right)\right)\)

                \(=\frac{1}{2}\left(\overrightarrow{AO}\right)+\overrightarrow{OD}+\overrightarrow{FE}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{FE}\right)\)

                \(=\overrightarrow{MP}\)

Suy ra tam giác MNP cân và có góc PMN = \(\frac{\Pi}{3}\) => Điều phải chứng minh

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 4 2019 lúc 16:05

Chọn đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Ta có :

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 4 2019 lúc 16:01

Chọn đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Ta có :

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án