Tìm các số x,y,z biết: 3x=5y=7z và 2x-y+z=64
Tìm các số x, y, z, biết 2x = 3y , 5y = 7z và 3x - 7y + 5z = 30
2x=3y;5y=7z
=>x/3=y/2;y/7=z/5
=>x/21=x/14;y/14=z/10
=>x/21=y/14=z/10
=>3x/63=7y/98=5z/50
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
3x/63=7y/98=5z/50=3x-7y+5z/63-98+50=30/15=2
suy ra : 3x/63=2 =>3x=126 =>x=126:3=42
7y/98=2 =>7y =196 =>y=196:7=28
5z/50=2 =>5z = 100 => z=100:5=20
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ 1 và 2
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số = nhau ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\frac{x}{21}=2\Rightarrow x=42\)
\(\frac{y}{14}=2\Rightarrow y=28\)
\(\frac{z}{10}=2\Rightarrow z=20\)
Tìm x,y,z biết 2x=3y;5y=7z và 3x+5y-7z=30
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{2y}{14}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}=\frac{3x+5y-7z}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)
\(\frac{3x}{63}=\frac{10}{21}\Rightarrow x=\frac{10}{21}.63:3=10\)
\(\frac{5y}{70}=\frac{10}{21}\Rightarrow y=\frac{10}{21}.70:5=\frac{20}{3}\)
\(\frac{7z}{70}=\frac{10}{21}\Rightarrow z=\frac{10}{21}.70:7=\frac{100}{21}\)
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
Tìm x , y , z biết :
a) 3x = 2y ; 7y = 5z và x - y + z = 32
b) 3x = 2y ; 5y = 7z và 3x + 5y - 7z = 42
c) 5x = 2y ; 2x = 3z và x . y = 90
d)2x = 3y = 5z và x + y - z = 95
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
tìm x,y,z biết :
2x = 3y ; 5y = 7z và 3x + 5y - 7z và 3x + 5y - 7z = 30
3x/2 = y/3 = 7z/4 và x+y+z 134
x/2 = y/3 = z/ và x.y.z = 810
tìm các số x, y, z biết :
b) 2x = 3y . 5y = 7z và 3x - 7y + 5z = 30
mọi người ơi giúp mik với ai làm đc mik tick cho
Lời giải:
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$\Rightarrow \frac{x}{21}=\frac{y}{14}$
$5y=7z\Rightarrow \frac{y}{7}=\frac{z}{5}\Rightarrow \frac{y}{14}=\frac{z}{10}$
Vậy:
$\frac{x}{21}=\frac{y}{14}=\frac{z}{10}$
$=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2$
$\Rightarrow x=21.2=42; y=14.2=28; z=10.2=20$
tìm x,y,z biết 3x=5y=7z-2x và xy+yz-xz=3465
tìm x,y,z biết 2x=3y;5y=7z và 3x+5z-7y=30
2x = 3y => 10x=15y
5y = 7z => 15y=21z
=> 10x=15y=21z =>x=2,1z
y=1,4z
Mà : 3x - 7y + 5z = 30 => 6,3z - 9,8z + 5z=30 =>1,5z=30
=>z=20
y=28
x=42
Từ \(2x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{7}=\frac{y}{2}.\frac{1}{7}=\frac{x}{21}=\frac{y}{14}\)( 1 )
Từ \(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}=\frac{y}{7}.\frac{1}{2}=\frac{z}{5}.\frac{1}{2}=\frac{y}{14}=\frac{z}{10}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Đặt \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=21k\\y=14k\\z=10k\end{cases}}\)
Thay vào \(3x+5z-7y=30\)ta có ;
\(3.21k+5.10k-7.14k=30\)
\(63k+50k-98k=30\)
\(15k=30\)
\(k=2\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=21.2\\y=14.2\\z=10.2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)