tính nhanh: \(\left(6^7\cdot9^2\right):\left(5^{15}\cdot8^5\right)\)
\(\frac{2^7\cdot9^3}{6^5\cdot8^2}-\frac{\left(0,4\right)^6}{^{\left(0,8\right)^5}}\)
tính nhanh
Tính\(\frac{\left(4\cdot7+2\right)\left(6\cdot9+2\right)\left(8\cdot11+2\right)..........\left(100\cdot103+2\right)}{\left(5\cdot8+2\right)\left(7\cdot10+2\right)\left(9\cdot12+2\right)..........\left(99\cdot102+2\right)}\)
Tình A=\(\frac{\left(4\cdot7+2\right)\left(6\cdot9+2\right)\left(8\cdot11+2\right)...\left(100\cdot103\right)}{\left(5\cdot8+2\right)\left(7\cdot10+2\right)\left(9\cdot12+2\right)...\left(99\cdot102+2\right)}\)
Tính hợp lý
a)\(\left(-\frac{1}{3}\right)^2\cdot\left(5\frac{1}{2}\right)^0+\left(-\frac{1}{3}\right)^5\cdot4\frac{1}{2}\)
b) \(\left(\frac{2^2\cdot2^3}{4^2\cdot16}\right)^{15};\left(\frac{2^6}{16^2}\right)^{10}\)
c)\(\frac{2^{15}\cdot9^4}{6^6\cdot8^3}\)
a, Tự chép đề bài ((:
\(=\frac{1}{9}\cdot1+\left(-\frac{1}{243}\right)\cdot\frac{9}{2}\)
\(=\frac{1}{9}-\frac{1}{54}\)
\(=\frac{5}{54}\)
b, 1. \(\left(\frac{2^2\cdot2^3}{4^2\cdot16}\right)^{15}\)
\(=\left(\frac{2^5}{2^4\cdot2^4}\right)^5=\left(\frac{2^5}{2^8}\right)^5=\left(\frac{1}{2^3}\right)^5=\left(\frac{1}{8}\right)^5=\frac{1}{8^5}\)(Để vậy đi :v)
2. \(\left(\frac{2^6}{16^2}\right)^{10}\)
\(=\left(\frac{2^6}{2^8}\right)^{10}=\left(\frac{1}{2^2}\right)^{10}=\frac{1}{2^{20}}\)
c, \(\frac{2^{15}\cdot9^4}{6^6\cdot8^3}\)
\(=\frac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\frac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\frac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=\frac{3^2}{1}=3^2=9\)
Tính
bài 1 ,\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}\)
Bài 2 , \(\frac{2^{15}\cdot9^4}{6^6\cdot8^3}\)
Trình bày cụ thể nha
BÀI 1.
\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\frac{4^5}{5^5}}{\frac{2^6}{5^6}}=\frac{4^5}{5^5}:\frac{2^6}{5^6}=\frac{4^5}{5^5}\cdot\frac{5^6}{2^6}=\frac{4^5\cdot5^6}{5^5\cdot2^6}=\frac{4^5\cdot5}{2^6}=\frac{\left(2^2\right)^5\cdot5}{2^6}=\frac{2^{10}\cdot5}{2^6}\) \(=2^4\cdot5=16\cdot5=80\)
BÀI 2.
\(\frac{2^{15}\cdot9^4}{6^6\cdot8^3}=\frac{2^{15}\cdot\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\frac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=\frac{3^8}{3^6}=\frac{3^6\cdot3^2}{3^6}=3^2=9\)
mày muốn gì sao mày ra đề khó thế lần sau ra đề dễ hơn đấy
Rút gọn:
a,\(A=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
b,\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2014\cdot2016}\right)\)
Tính \(A=\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-3-5-7-...-49}{89}\)
\(B=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^{10}\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot27^3+15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+12^{10}}\)
bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó
Tính nhanh :
\(A=\left(1-\frac{2}{6\cdot7}\right)\left(1-\frac{2}{7\cdot8}\right)\left(1-\frac{2}{8\cdot9}\right)\cdot\cdot\cdot\left(1-\frac{2}{51\cdot52}\right)\)
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot\cdot\cdot\left(1+\frac{1}{99\cdot101}\right)\)
đụ cha mi
mi trù ta thi rớt HK II mà ta giúp mày hả
mấy bài này cũng dễ ẹt nữa
đừng có mơ ta sẽ giúp mày
ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)
\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)
\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)
\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)
\(B=\frac{100\cdot2}{1\cdot101}\)
\(B=\frac{200}{101}\)
Tính hợp lý:
\(H=\frac{\left(3\cdot4\cdot2^{16}\right)}{11\cdot2^{13}\cdot4^{11}-16^9}\)
\(I=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
\(I=\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.2^{30}.3^{27}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{5.2^{30}.3^{27}-3^{30}.2^{29}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{27}.\left(5.2-3^3\right)}{2^{28}.3^{18}.\left(5.3-2.7\right)}\)
\(=\frac{2^{29}.3^{27}.-17}{2^{18}.3^{18}}\)
\(=\frac{2^9.3^9.-17}{1}\)
Ta có \(H=\frac{\left(3.4.2^{16}\right)}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3.4.2^{16}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3.2^{18}}{11.2^{35}-2^{36}}\)
\(=\frac{3.2^{18}}{2^{35}.\left(11-2\right)}\)
\(=\frac{3.2^{18}}{2^{35}.3^2}\)
\(=\frac{1}{2^{17}.3}\)