Chung minh rang bieu thuc:
A=4x(x+y)(x+y+z)(x+z)+x^2.z^2
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có:
\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)
không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .
cho cac so x,y,z thoa man x/2013=y/2014=z/2015 chung minh rang 4(x-y)(y-z)=(z-x)^2
phan tich da thuc sau thanh nhan tu
xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
tinh gia tri bieu thuc
3(x-3)(x+7) + (x-4)2 + 48 tai x = 0,5
chung minh rang
x2 - 6x + 10 >0 voi moi x
4x - x2 - 5 <0 voi moi x
1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= x2y+xy2+y2z+yz2+x2z+xz2+2xyz
=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)
=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)
=(xy+xz+yz+z2).(x+y)
=(x(y+z)+z(y+z)).(x+y)
=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)
2. 3(x-3)(x-7)+(x-4)2+48
=3(x2+4x-21)+x2-8x+16+48
=4x2-4x+1 = (2x-1)2
Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0
3, x2-6x+10
= x2-2.3.x+9+1
=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)2 >=0 với mọi x)
=> x26x+10 >0 với mọi x
4x-x2-5
=-(x2-4x+5)
=- (x2-2.2x+4+1)
= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)
vậy, 4x-x2-5<0 với mọi x
Ta có : x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x - 3)2 + 1
Mà (x - 3)2 \(\ge0\forall x\)
Nên : (x - 3)2 + 1 \(\ge1\forall x\)
=> (x - 3)2 + 1 \(>0\)(đpcm)
chung to rang bieu thuc khong thuoc vao bien
a 2 (2x+x mũ 2 ) + X mũ 2 (x+2) +(x mũ 3+4X+3)
b z (y-x) + y(z -x) + x (y+z) -2yz+ 10
c 2y (y mũ 2+y +1) -2y mũ 2 (y+1)-2(y+1)
d x (3x +12) - (7x-20) +x mũ 2 (2x-3)-3(2x mũ 2+5)
e3(2x-1)-5(x+3)+(3x-4) -19x
cho x,y,z>0 thoa man x+y+z<=1 chung minh rang 17(x+y+z)+2(1/x+1/y+1/z)=>35
Áp dụng BĐT Cô-si cho 2 số dương, ta có:
\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)
Chứng minh tương tự, ta có
\(18y+\frac{2}{y}\ge12\)
\(18z+\frac{2}{z}\ge12\)
Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)
Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)
Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)
\(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)
cho x, y , z la cac so nguyen thoa man x . y - x. z + y.z - z^2 +1 =0 chung minh rang x+ y =0
cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2\) ;\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
tinh gia tri bieu thuc:A=\(\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2\)
cho x, y , z là các số nguyen thoa man x . y - x. z + y.z - z^2 +1 =0 chung minh rang x+ y =0