Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan mạnh huy
Xem chi tiết
Nguyễn Hải yến
Xem chi tiết
Đỗ Minh Hương
Xem chi tiết
Đinh Đặng Bảo Hân
24 tháng 6 2020 lúc 16:04

https://olm.vn/hoi-dap/detail/1334571579.html

Khách vãng lai đã xóa
Lương Thế Quyền
Xem chi tiết
Phạm Phương Linh
23 tháng 10 2015 lúc 18:36

Giờ tạm biết là (m;n)={(2;3);(3;2)} đã. mk sẽ giải chi tiết cho bn sau. Còn giờ mk chỉ gợi ý cách làm thôi nhé?

Cách làm:

Thử từng giá trị với m=2;3;n=2;3 ta tìm đk hai giá trị như trên.

Dùng đồng dư thức(mod) để chứng minh với mọi n và m>3 thì 4m+n hoặc mn+11 là hợp số.

Xong kết luận kết quả như trên

Xong!!!!!!!!!!!!!!!!

Nguyễn Vân Huyền
Xem chi tiết
Tưởng Lưu
27 tháng 12 2014 lúc 7:58

Thay hướng dẫn tiếp phần b nhé: 

Giả sử cả 3 số p;q;r đều không chia hết cho 3 thế thì p2;q2;r2 chia cho 3 chỉ dư 1 ( vì p;q;r nguyên tố)

Suy ra: p+ q+ rchia hết cho 3 mà p+ q+ r>3 suy ra p+ q+ rlà hợp số ( mâu thuẫn đề bài).

Vậy điều giả sử là sai suy ra trong 3 số tồn tại ít nhất một số chia hết cho 3

Không mất tính tổng quat giả sử p<q<r\(\Rightarrow\)p chia hết cho 3 mà p là số nguyên tố suy ra p = 3

Lại có: p;q;r là 3 số nguyên tố liên tiếp nên q = 5; r=7

Vậy (p;q;r) = (3;5;7) và các hoán vị 

Nguyễn Hải Nam
28 tháng 12 2014 lúc 11:22

b, Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1 

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( là hợp số, loại )

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( loại )

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ( 2 số còn lại chia 3 dư 1 ) loại vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ( 2 số còn lại chia hết cho 3 ) chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3

mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3. 

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 - 3 - 5 hoặc 3 - 5 - 7 

Với 3 số nguyên tố là 2 - 3 - 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ( là hợp số, loại )

Vậy 3 số nguyên tố cần tìm là 3 5 7 

Nguyễn Vân Huyền đã chọn câu trả lời này

dao minh hieu
1 tháng 4 2018 lúc 21:39

Vai trò của p,q,rp,q,r là như nhau nên giả sử p>q>rp>q>r
Xét p=2p=2,ta tìm được 3 số là 2;3;5.Không thỏa
Xét p=3p=3,ta tìm được 3 số là 3;5;7 thỏa
Xét p>3p>3
Bổ đề:Mọi số nguyên tố >3>3 nến đem bình phương lên thì luôn chia 3 dư 1
thật vậy các số nguyên tố lớn hơn 3 nện có dạng 3k+13k+1 hoặc 3k+23k+2
Nếu có dạng 3k+13k+1,ta có:(3k+1)2=9k2+6k+1≡1(mod3)(3k+1)2=9k2+6k+1≡1(mod3)
Nếu có dạng 3k+23k+2,ta có (3k+2)2=9k2+12k+4≡1(mod3)(3k+2)2=9k2+12k+4≡1(mod3)
Vậy nếu p>3p>3 thì các số q,r>3q,r>3nên khi bình phương lên đều dư 1
⇒p2+q2+r2≡0(mod3)⇒p2+q2+r2≡0(mod3)
Vậy ta có (3;5;7)(3;5;7) và các hoán vị

Huyền Dịu
Xem chi tiết
Nguyen Minh Hieu
18 tháng 4 2020 lúc 12:37

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

Khách vãng lai đã xóa
Đậu Hoàng Nhật Minh
Xem chi tiết
forever young
3 tháng 4 2018 lúc 19:44

Vì pq +11 là số nguyên tố \(\Rightarrow\)pq +11 là số lẻ \(\Rightarrow\)pq là số chẵn \(\Rightarrow\)\(⋮\)2 hoặc q\(⋮\)2

p\(⋮\)2 mà q là số nguyên tố \(\Rightarrow\)q = 2 

thay p = 2 vào 7p +q ta đc 14+ q mà 7p +q là số nguyên tố \(\Rightarrow\)14+q là số nguyên tố

 \(\Rightarrow\)14+q ko chia hết cho 3 mà 14 chia 3 dư 2 \(\Rightarrow\)\(⋮\)3 hoặc q chia 3 dư 2

q chia 3 dư 2 \(\Rightarrow\)q có dạng 3k+2 (k là số tự nhiên)

thay q=3k+2;p=2 vào pq +11 ta đc

2(3k+2)+11=6k+4+11=6k+15=3(2k+5)\(⋮\)3 và 3(2k+5) > 3 (KTM vì pq +11 là số nguyên tố)

\(⋮\)3\(\Rightarrow\)q có dạng 3a(a là số tự nhiên) 

mà q là số nguyên tố \(\Rightarrow\)q =1

2. chứng minh tương tự

đúng thì k nha

Đậu Hoàng Nhật Minh
19 tháng 3 2018 lúc 11:21

Gúp mình nhanh lẹ nhá AI NHANH K CHO

Trần Ngọc Lê Anh
Xem chi tiết
crewmate
Xem chi tiết
Đoàn Đức Hà
7 tháng 1 2021 lúc 9:59

Nếu cả \(p,q\)đều là số lẻ thì \(pq+11\)là số chẵn nên không thể là số nguyên tố. 

Nếu \(p=2\):

\(q+14\)\(2q+11\)đều là số nguyên tố. 

Với \(q=3\)thỏa mãn. 

Với \(q>3\)thì \(q=3n+1\)hoặc \(q=3n+2\).

\(q=3n+1\)thì \(q+14=3n+15⋮3\).

\(q=3n+2\)thì \(2q+11=2\left(3n+2\right)+11=6n+15⋮3\).

Nếu \(q=2\):

\(7p+2\)\(2p+11\)đều là số nguyên tố. 

Xét các trường hợp của \(p\)tương tự trường hợp \(p=2\).

Kết luận: có các trường hợp thỏa mãn là \(\left(p,q\right)\in\left\{\left(2,3\right),\left(3,2\right)\right\}\)

Khách vãng lai đã xóa