Cho hình vuông ABCD . Và Một điểm E bất kì thuộc cạnh AB . Gọi F là giao điểm của DE và BC .
Chứng minh : 1/DA2 = 1/DE2 + 1/DF2
Cho hình vuông ABCD . Và mội điểm E bất kì thuộc cạnh AB . Gọi F là giao điểm của DE và BC .
chứng minh : 1/DA^2=1/DE^2+1/DF^2.
Cho hình vuông ABCD. Một điểm E bất kì thuộc cạnh AB. Gọi F là giao điểm của DE và BC . Chứng minh rằng:
\(\frac{1}{DA^2}=\frac{1}{DE^2}+\frac{1}{DF^2}\)
Tự vẽ hình
vẽ thêm Dựng đứng D đường thẳng vuông góc với DE cắt BC tại P
Trong tam giác DPF ta có :(theo đlý số 4 hệ thức lượng)
----> 1/CD2 =1/DP2 +1/DF2
mà CD = DA(cạnh hình vuông )
-----> ^D1 =^D2 (2 góc tương ứng )
---__> tam giác DAE= tam giác DCP
------> DE=DP( 2 góc tương ứng ) ----> 1/ DA2 =1/DE2 + 1/DF2
Cho hình vuông ABCD. Một điểm E bất kì thuộc cạnh AB. Gọi F là giao điểm của DE và BC . Chứng minh rằng:
\(\frac{1}{DA^2}=\frac{1}{DE^2}+\frac{1}{DF^2}\)
Cho hình vuông ABCD. Lấy điểm E bất kì thuộc cạnh BC. Trên nửa mặt phẳng bờ BC không chứa A, vẽ hình vuông ECFG.
a. Chứng minh DE vuông góc BF;
b. Gọi H là giao điểm của DE và BF, chứng minh ba điểm A, H, G thẳng hàng.
Cho hình vuông ABCD . Trên cạnh BC lấy điểm E bất kì. Trên tia đối của tia CD lấy F sao cho CE= CF . Gọi K là giao điểm của EF và BD .
a) Chứng minh ΔKDF vuông cân tại K.
b) Gọi H là giao điểm DE và BF . Tính diện tích ΔBDF và độ dài DH , biết rằng CB = 8 (cm), CE = 6 (cm).
c) Gọi O là giao điểm của AC và BD; M là trung điểm EF . Chứng minh tứ giác OMHK là hình thang cân.
Cho hình vuông ABCD , điểm E thuộc cạnh BC. Gọi F là giao điểm của AE và CD, G là giao điểm của DE và BF. a) Gọi I và K theo thứ tự là giao điểm của AB với CD và DG. Chứng minh rằng IE song song với BD. b) Chứng minh rằng AE vuông góc với CG
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
a.
Xét hai tam giác vuông ABE và ADH:
\(AD=AB\)
\(\widehat{BAE}=\widehat{DAH}\) (cùng phụ \(\widehat{DAE}\))
\(\Rightarrow\Delta_vABE=\Delta_vADH\) (góc nhọn-cạnh góc vuông) (1)
\(\Rightarrow AH=AE\)
\(\Rightarrow\Delta AHE\) vuông cân tại A
b. Cũng từ (1) ta có \(BE=DH\)
Xét hai tam giác vuông ABE và FDA có:
\(\widehat{BAE}=\widehat{AFD}\) (so le trong)
\(\Rightarrow\Delta_vABE\sim\Delta_vFDA\)
\(\Rightarrow\dfrac{AB}{DF}=\dfrac{BE}{AD}\Rightarrow AB.AD=BE.DF\Rightarrow AB^2=HD.DF\) (do AD=AB và BE=HD)
c. Ta có: \(\left\{{}\begin{matrix}S_{HAF}=\dfrac{1}{2}AH.AF\\S_{HAF}=\dfrac{1}{2}AD.HF\end{matrix}\right.\) \(\Rightarrow AH.AF=AD.HF\)
\(\Rightarrow\dfrac{1}{AD}=\dfrac{HF}{AH.AF}\Rightarrow\dfrac{1}{AD^2}=\dfrac{HF^2}{AH^2.AF^2}=\dfrac{AH^2+AF^2}{AH^2.AF^2}\)
\(\Leftrightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AH^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (do AH=AE theo chứng minh câu a)
\(\Leftrightarrow\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\) cố định (đpcm)
Bài 1: Cho ΔABC vuông tại A. Gọi D là một điểm bất kì trên cạnh BC. Kẻ DE vuông góc AB tại E,DF vuông góc AC tại F. Chứng minh AEDF là hình chữ nhật.
Lời giải:
Tứ giác $AEDF$ có 3 góc vuông $\widehat{E}=\widehat{A}=\widehat{F}=90^0$ nên $AEDF$ là hình chữ nhật.
Cho hình vuông ABCD, điểm E thuộc cạnh BC.Gọi F là giao điểm của AE và CD, G là giao điểm của DE và BF a) Gọi I,K theo thứ tự là giao điểm của AB với CG và DG. Chứng minh: IE//BD b) Chứng minh: AE vuông góc EG