Cho đa thức N(x) = 4x^4+x^2+x.
Chứng tỏ rằng đa thức N(x) ko có nghiệm
Cho đa thức f(x)\(=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\) Chứng tỏ rằng đa thức trên ko có nghiệm
f(x)=5x3+2x4-x2+3x2-x3-x4+1-4x3
=(5x3-x3-4x3)+(2x4-x4)+(3x2-x2)+1
=0+x4+2x2+1>(=)0+0+0+1=1
=>đa thức f(x) không có nghiệm
=>đpcm
Chứng tỏ rằng x=1/2 là nghiệm của đa thức P(x)=4x^2-4x+1 và chứng tỏ đa thức Q(x) =4x^2+1 không có nghiệm
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
Ta có :
\(4x^2\ge0\)
\(1>0\)
\(\Rightarrow4x^2+1>0\)
=> Đa thức Q(x) vô nghiệm
Cho hai đa thức P(x) =x4+5x3-4x2+3x+m; Q(x)=x4+4x3-3x2+2x+n
a) Tìm m,n để P(x) ,Q(x) chia hết cho (x-2)
b)Xét đa thức R(x)=P(x)-Q(x). Với giá trị m,n vừa tìm chứng tỏ rằng đa thức R(x) chỉ có duy nhất 1 nghiệm
tìm nghiệm của đa thức:
a) x2-1
b) chứng tỏ rằng đa thức sau ko có nghiệm: P(x)= -x2 + 4x - 5
a) Cho x2-1=0
x2=1
x= 1 hoặc -1
b)Cho P(x)=0
-x2 + 4x - 5 = 0
-x2 + 4x = 5
-x . x + 4x = 5
x(-x+4) = 5
TH1: x= 5
TH2: -x+4 = 5
-x= 1
x=-1
xong bạn thay số rồi kết luận nhá
a,\(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
KL:...
b,\(P\left(x\right)=-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)
\(\Rightarrow VN\)
a, x^2 - 1
Cho đa thức bằng 0
-> x^2 - 1 = 0
-> x^2 = 1
-> x = 1 hoặc x = -1
Vậy x = 1 hoặc x = -1 là 2 nghiệm của đa thức
Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a}
\)
pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe
cho đa thức :
P(x) = 1+ 3x^5 - 4x^2 + x^5 + x^3 - x^2 + 3x^3
và Q(x)=2x^5 - x^2 + 4x^5 - x^4 + 4x^2 - 5x
a, thu gọn và sắp xếp các hạng tử của đa thức lũy thừa tăng của biến
b, tính P(x) + Q(x) ; P(x) - Q(x)
c,chứng tỏ rằng x=0 là nghiệm của đa thức Q(x) nhưng ko là nghiệm của đa thức P(x)
Cho hai đa thức: \(P\left(x\right)=x^4+5x^3-4x^2+3x+m\)và \(Q\left(x\right)=x^4+4x^3-3x^2+2x+n\)
a) Tìm giá trị của m,n để các đa thức P(x) và Q(x) chia hết cho ( x -2 )
b) Xét đa thức R(x) = P(x) - Q(x) với giá trị m,n vừa tìm được. Hãy chứng tỏ rằng đa thức R(x) chỉ có một nghiệm duy nhất.
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
Cho đa thức: M(x)=6x3+2x4-x2+3x2-2x3-x4+1-4x3
a) Sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm của biến
b) Cho đa thức N(x)=-5x4+x3+3x2-3, Tính tổng M(x)+N(x); hiệu M(x)-N(x)
c) Chứng tỏ rằng đa thức M(x) treeb không có nghiệm
a,\(M(x)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=(2x^4-x^4)+(6x^3-2x^3-4x^3)+(-x^2+3x^2)+1\)
\(=x^4+2x^2+1\)
b.\(M(x)+N(x)=(x^4+2x^2+1)+(-5x^4+x^3+3x^2-3)\)
\(=(x^4-5x^4)+x^3+(2x^2+3x^2)+(1-3)\)
\(=-4x^4+x^3+5x^2-2\)
\(M(x)-N(x)=(x^4+2x^2+1)-(-5x^4+x^3+3x^2-3)\)
\(=(x^4+5x^4)-x^3+(2x^2-3x^2)+(1+3)\)
\(=6x^4-x^3-x^2+4\)
c.Ta có
\(M(x)=x^4+2x^2+1=0\)
\(\Rightarrow x^4+2x^2=-1\)
mà \(x^4\ge0;2x^2\ge0\)
Vậy đa thức \(M(x)\)ko có nghiệm
Chúc bạn học tốt
Chứng tỏ rằng đa thức:\(x^2+4x+5\) ko có nghiệm.
Giúp mình nhanh nha!
Chứng tỏ rằng đa thức:\(x^2+6x+10\) ko có nghiệm.
Giúp mình nhanh nha!
Thanks!
x2+4x+5=x2+4x+4+1=(x+2)2+1 >= 0+1 =1>0 do đó đa thức trên ko có nghiệm
x2+6x+10=x2+6x+9+1=(x+3)2+1 >=0+1=1>0 do đó đa thức trên ko có nghiệm