Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn thị thu trang
Xem chi tiết
Ben 10
26 tháng 8 2017 lúc 20:18

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Nguyễn  Thị Phương Thu
Xem chi tiết
Đỗ Thi ánh Dương
Xem chi tiết
Nguyễn Tuấn Kiên
13 tháng 12 2017 lúc 20:12

trên hình vẽ có 52 tia

có 74 đường thẳng

mình làm vậy đó

Đỗ Thi ánh Dương
12 tháng 12 2017 lúc 19:15

Bài này là bài bọn mình thi học kì

Đỗ Thi ánh Dương
15 tháng 12 2017 lúc 19:00

Cám ơn bạn

nguyenngoccatuong
Xem chi tiết
nguyenduytinoqb
18 tháng 11 2016 lúc 11:59

10 nhan 9 chia 2=45

a, 10nhan 9 chia 2 =45

c, n.(n-1) chia 2

Xem chi tiết
Chu Công Đức
19 tháng 6 2019 lúc 15:28

Số đường thẳng vẽ được là : 25 . ( 25 - 1 ) : 2 = 300 ( đường thẳng )

Cũng trong trường hợp đó nếu có 50 điểm thì số đường thẳng là :

50 . ( 50 - 1 ) : 2 = 1225 ( đường thẳng )

Công thức tính số đường thẳng tổng quát là :

TQ : n . ( n - 1 ) : 2

Hiếu Đại Ca
Xem chi tiết
thu ngân
Xem chi tiết
Nguyễn Thị Lê Vy
30 tháng 12 2015 lúc 12:12

a) =45( đường thẳng)

b)=43(đường thẳng)

**** cho mình nhé

thu ngân
30 tháng 12 2015 lúc 12:13

a) 45 đường thẳng

b)43 đường thẳng

 

Lê Nhật Quang
30 tháng 12 2015 lúc 12:15

a       45

b            43

Nguyễn Ngọc Cát Tường
Xem chi tiết
ngonhuminh
22 tháng 10 2016 lúc 10:15

9+8+7+6+5+4+3+2+1=?

ngonhuminh
22 tháng 10 2016 lúc 14:19

a.

b. 8+7+6+5+4+3+2+1?

c. cong thuc tong quat

số điểm là n số 

số dt =S

s=(1+n-1)/2*(n-1)=n(n-1)/2

b

S=(1+n-2)/2.(n-2)=(n-1).(n-2)/2

Hà Trí Kiên
Xem chi tiết

a, Với 5 điểm không thẳng và trong đó bất cứ 3 điểm nào cũng không thẳng hàng với nhau thì làm như sau em nhé.

Cứ 1 điểm sẽ tạo với ( 5 - 1) điểm còn lại ( 5 - 1) đường thẳng

Có 5 điểm tạo được số đường thẳng là: ( 5-1) \(\times\) 5 

Theo cách tính trên mỗi đường thẳng được tính hai lần nên số đường thẳng được tạo là: ( 5 - 1) \(\times\) 5: 2 = 10 ( đường thẳng)

b, Với n điểm không thẳng hàng và trong đó bất cứ 3 điểm nào cũng không thẳng hàng với nhau thì làm như sau:

Cứ 1 điểm tạo với n - 1 điểm còn lại n - 1 đường thẳng

Với n điểm sẽ tạo được số đường thẳng là: (n-1) \(\times\) n 

Theo cách tính trên mỗi đường thẳng sẽ được tính 2 lần nên số đường được tạo là:

( n- 1)n : 2 ( đường thẳng)

 

Hà Trí Kiên
8 tháng 4 2023 lúc 18:53

Em cảm ơn!