Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan tuấn anh
Xem chi tiết
Nguyễn Nhật Minh
23 tháng 12 2015 lúc 22:19

\(A=\frac{1}{\left(x-1\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}\)

\(2A=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}=\frac{1}{x-1}-\frac{1}{x+5}\)

\(2A=\frac{x+5-x+1}{\left(x-1\right)\left(x+5\right)}=\frac{6}{x^2+4x-5}\Leftrightarrow A=\frac{3}{\left(x+2\right)^2-9}\le\frac{3}{-9}=-3\)

Max A = -3 khi x =-2 (TM)

Tân Thái Công Chúa
Xem chi tiết
Nguyễn Quang Tùng
26 tháng 12 2016 lúc 19:19

ĐKXĐ x thuộc R

ta thấy x^2 +1 >=0

=> \(\frac{3-4x}{x^2+1}\)>=0

dấu bằng xảy ra khi và chỉa khi

3 -4x =0

=> 4x = 3

=> x = \(\frac{3}{4}\)

vậy MIN= 0 tại x = \(\frac{3}{4}\)

Thiên An
Xem chi tiết
Bảo Duy Cute
14 tháng 6 2016 lúc 17:39

*GTNN:

A=\(\frac{x^2-4x+4-x^2-1}{x^2+1}\) =\(\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\) 

GTNN của A=-1 khi và chỉ khi x=2

*GTLN:

A=\(\frac{4x^2+4-4x^2-4x-1}{x^2+1}\) =4-\(\frac{\left(2x+1\right)}{x^2+1}\le4\) 

GTLN của A=4 khi và chỉ khi x=\(\frac{-1}{2}\)

 

minh anh
Xem chi tiết
Đinh Tuấn Việt
19 tháng 6 2016 lúc 18:48

A = \(\frac{3-4x}{x^2+1}\) <=> A.(x2 + 1) = 3 - 4x <=> Ax2 + 4x + A - 3 = 0 
Để phương thức trên tồn tại x thì 4 - A.(A-3) = -A2 + 3A +4 > 0 
<=> A2 - 3A - 4 < 0 
<=> (A+1). (A - 4) < 0 
<=> -1 < A < 4 
Vậy GTNN của A là -1 và GTLN của A là 4

Hoài Đoàn
6 tháng 12 2016 lúc 9:15

Đại số lớp 9

Kuriyama
1 tháng 10 2017 lúc 22:17

Thảm thực vật ở đới ôn hòa thay đổi từ Tây sang Đông lần lượt như thế nào???

Ai biết, giúp mink nha!vui

NGUYỄN ANH PHƯƠNG
Xem chi tiết
Ngô Văn Phương
Xem chi tiết
Phước Nguyễn
8 tháng 11 2015 lúc 18:27

Tiếp tục tìm \(Max\), ta có:

\(A=\frac{4x^2+4-4x^2-4x-1}{x^2+1}=\frac{4\left(x^2+1\right)}{x^2+1}-\frac{\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)với mọi \(x\)

Dấu \(''=''\)xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\)

                          \(\Leftrightarrow2x+1=0\)

                           \(\Leftrightarrow x=-\frac{1}{2}\)

Vậy,  \(MaxA=4\Leftrightarrow x=-\frac{1}{2}\)

Minh Hiền
8 tháng 11 2015 lúc 18:00

Đặt biểu thức trên là A.

Ta có: A lớn nhất khi x2+1 nhỏ nhất

Mà x2+1 > 1

=> GTNN của x2+1 là 1

<=> x=0

=> A=\(\frac{3-4.0}{0+1}=\frac{3}{1}=3\)

Vậy GTLN của A là 3 <=> x=0.

Đỗ Hồng Ngọc
Xem chi tiết
Thanh Tùng DZ
25 tháng 5 2019 lúc 15:17

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)

Không Tên
Xem chi tiết
Pain Địa Ngục Đạo
21 tháng 1 2018 lúc 22:31

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

Lê Nhật Khôi
21 tháng 1 2018 lúc 23:06

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

Pain Địa Ngục Đạo
21 tháng 1 2018 lúc 23:10

Giang ơi thật sư t cx ko biết làm  nhưng t ngếu ngáo tí , làm theo cách  tao nghĩ   

1 . \(\frac{\left(x^2+2x\frac{1}{2}+\frac{1}{2}\right)-\frac{1}{2}+1}{\left(x+1\right)^2}\)

\(\left(x^2+\frac{1}{2}\right)^2+\frac{1}{2}>\frac{1}{2}\)    \(\left(x+1\right)^2\ge0\) dấu = xảy ra khi x=-1

vậy Min của P là 1/2 

2:  tương tự câu 1

\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

dưới mẫu cũng tương tự vậy Min của  P là \(\frac{\frac{1}{2}}{\frac{1}{2}}=1\)

bài 3 tìm Gía trị lớn nhất     \(\frac{2}{\left(x^2-3\right)^2+8}\) vậy Min của mẫu là 8 tức là dấu > mà nó ở dưới mẫu sẽ biến thành dấu <

suy ra  \(q< \frac{2}{8}\)

câu 4 

\(\frac{3}{-\left(x^2+4x+2\right)-8}=\frac{3}{-\left(x+2\right)^2-8}\)  vì -(x+2)^2 nhỏ hơn 0  suy ra max là 8 

dấu max là dâu < mà ở dưới mẫu sẽ biến thành > 

vậy min của Q là 3/-8

Nguyễn Minh Phương
Xem chi tiết