CMR : \(\frac{a+2014}{a-2014}\)= \(\frac{b+2015}{b-2015}\) thì \(\frac{a}{2014}=\frac{b}{2015}\) Với a,b thuộc Z
CMR: Nếu \(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}thì\frac{a}{2014}=\frac{b}{2015}\)
\(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}\Rightarrow\left(a+2014\right)\left(b-2015\right)=\left(a-2014\right)\left(b+2015\right)\)
\(\Rightarrow\frac{a+2014}{b+2015}=\frac{a-2014}{b-2015}=\frac{a+2014+a-2014}{b+2015+b-2015}=\frac{2a}{2b}=\frac{a}{b}\)
\(\Rightarrow\frac{a+2014}{b+2015}=\frac{a}{b}=\frac{a+2014-a}{b+2015-b}=\frac{2014}{2015}\)
\(\frac{a}{b}=\frac{2014}{2015}\Rightarrow2015a=2014b\Rightarrow\frac{a}{2014}=\frac{b}{2015}\)
\(\Rightarrowđpcm\)
Chứng minh rằng nếu có: \(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}\)thì: \(\frac{a}{2014}=\frac{b}{2015}\)
Ta có : \(\frac{a+2014}{a-2014}=\frac{a+2015}{a-2015}\)
\(\Rightarrow\left(a+2014\right)\left(a-2015\right)=\left(a-2014\right)\left(a+2015\right)\)
\(\Rightarrow a^2-a-2014.2015=a^2+a-2014.2015\)
\(\Leftrightarrow a^2-a=a^2+a\)
=> a2 - a2 - a = a
=> -a = a
=> 0 = a + a
=> 2a = 0
=> a = 0
Vậy \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)
cho a>b> 0 chưng minh : \(\frac{a^{2015}-b^{2015}}{a^{2015}+b^{2015}}>\frac{a^{2014}-b^{2014}}{a^{2014}+b^{2014}}\)
Chia cả tử và mẫu của mỗi phân số tương ứng cho b2015; b2014
=> cần chứng minh: \(\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}>\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}\)
Ta có: \(VT=\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}=\frac{\left(\frac{a}{b}\right)^{2015}+1}{\left(\frac{a}{b}\right)^{2015}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}\)
\(VP=\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}=\frac{\left(\frac{a}{b}\right)^{2014}+1}{\left(\frac{a}{b}\right)^{2014}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)
Vì a> b > 0 => a/b > 1. Do đó:
\(\left(\frac{a}{b}\right)^{2015}+1>\left(\frac{a}{b}\right)^{2014}+1\)
=> \(\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)
=> VT > VP
Cho : a,b,c,d \(\ne\) 0 Tính T = x2015 + y2015 + z2015 + t2015
Biết \(\frac{x^{2014}+y^{2014}+z^{2014}+t^{2014}}{a^2+b^2+c^2+d^2}\)=\(\frac{x^{2014}}{a^2}\)+\(\frac{y^{2014}}{b^2}\)+\(\frac{z^{2014}}{c^2}\)+\(\frac{t^{2014}}{d^2}\)
\(\Leftrightarrow\frac{x^{2014}}{a^2+b^2+c^2+d^2}+\frac{y^{2014}}{a^2+b^2+c^2+d^2}+\frac{z^{2014}}{a^2+b^2+c^2+d^2}+\frac{t^{2014}}{a^2+b^2+c^2+d^2}\)
\(-\frac{x^{2014}}{a^2}-\frac{y^{2014}}{b^2}-\frac{z^{2014}}{c^2}-\frac{t^{2014}}{d^2}=0\)
\(\Leftrightarrow\left(\frac{x^{2014}}{a^2+b^2+c^2+d^2}-\frac{x^{2014}}{a^2}\right)+\left(\frac{y^{2014}}{a^2+b^2+c^2+d^2}-\frac{y^{2014}}{b^2}\right)+\left(\frac{z^{2014}}{a^2+b^2+c^2+d^2}-\frac{z^{2014}}{c^2}\right)\)
\(+\left(\frac{t^{2014}}{a^2+b^2+c^2+d^2}-\frac{t^{2014}}{d^2}\right)=0\)
\(\Leftrightarrow x^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+\)
\(z^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)
vì a2,b2,c2,d2 lớn hơn hoặc bằng 0
=> \(\hept{\begin{cases}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\end{cases}}và....\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\)
\(\Rightarrow\hept{\begin{cases}x^{2014}=0\\y^{2014}=0\\z^{2014}=0\end{cases}}và..t^{2014}=0\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}và...t=0\)
=> \(\hept{\begin{cases}x^{2015}=0\\y^{2015}=0\\z^{2015}=0\end{cases}}và..t^{2015}=0\Rightarrow x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)
vậy \(x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)
Cho:
A = \(\frac{2015}{2014^2+1}\)+\(\frac{2015}{2014^2+2}\)+\(\frac{2015}{2014^2+2014}\)
CMR: A không thuộc N !?!?!?
So sánh 2 số:
\(a)\sqrt{2014}-\sqrt{2013};B=\sqrt{2015}-\sqrt{2014}\\ b)E=\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}};F=\sqrt{2014}+\sqrt{2015}\)
So sánh : \(A=\frac{2015^{2016}+1}{2015^{2015}+1}\) và \(B=\frac{2014^{2015}+1}{2014^{2014}+1}\)
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha
So sánh
A=\(\frac{2015^{2014}+1}{2015^{2014}-1}\) B=\(\frac{2015^{2014}-1}{2015^{2014}-3}\)
CÁCH 1:
A=1và 2/2015^2014-1
B= 1và 2/2015^2014-3
Vì 1và 2/2015^2014-1 < 1và 2/2015^2014-3
Vậy A <B
CÁCH 2:
Ta biết: a/b>1=>a/b> a+n/b+n
B>1=> B= 2015^2014-1/2015^2014-3> 2015^2014-1+2/2015^2014-3+2=2015^2014+1/2015^2014-1=A
Vậy B>A