so sanh
A = 2016^2 va B = 2017 . 2015
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
So sanh A=2016^2016+1/2016^2017+1 va B=2016^2015+1/2016^2015+1
so sanh a va b a=2014+2015/2015+2016vab=2015+2016/2016+2017
Giải:
Ta có:
\(A=\frac{2014+2015}{2015+2016}=\frac{2014+2015+2}{2015+2016}-\frac{2}{2015+2016}=2-\frac{2}{2015+2016}\)(1)
\(B=\frac{2015+2016}{2016+2017}=\frac{2015+2016+2}{2016+2017}-\frac{2}{2016+2017}=2-\frac{2}{2016+2017}\)(2)
Từ (1) và (2) ta có: \(A=2-\frac{2}{2015+2016}\)và \(B=2-\frac{2}{2016+2017}\)
Vì \(\frac{2}{2015+2016}>\frac{2}{2016+2017}\rightarrow2-\frac{2}{2015+2016}< 2-\frac{2}{2016+2017}\)
\(\Rightarrow A< B\)
So sánh: a> A= 2015+2016 / 2016+2017 và B= 2015 / 2016 + 2016 / 2017
b> M=2015^35+1 / 2015^34+1 va N= 2015^34+1 / 2015^33+1
c> P= 2015^99+5 / 2015^99-1 va Q= 2015^99 +1 /2015^99
\(A=\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(B=\frac{2015}{2016}+\frac{2016}{2017}\)
vì \(\frac{2015}{2016+2017}<\frac{2015}{2016}\)và \(\frac{2016}{2016+2017}<\frac{2016}{2017}\)
nên A <B
So sánh A va B ma khong tính gia tri biet A= 2016*2016 va B =2015*2017
A = 2016 x 2016
A = (2015 + 1) x 2016
A = 2015 x 2016 + 2016
B = 2015 x 2017
B = 2015 x (2016 + 1)
B = 2015 x 2016 + 2015
Vì 2016 > 2015
=> A > B
A = \(2016^2\)
B = \(\left(2016-1\right)\left(2016+1\right)=2016\left(2016+1\right)-\left(2016+1\right)\)= \(2016^2+2016-2016-1\)= \(2016^2-1\)
\(\Rightarrow A>B\). Vậy A > B
a. So sanh 2 phan so:A= 2015/2016+2016/2017+2017/2018 va B = 2015+2016+2017/2016+2017+2018
b.1/2.4+1/4.6+........+1/(2x-2).2x = 1/8
c.Cho A = 1/4+1/9+1/16+...+1/81+1/100 . Chung minh rang : A > 65/132
d.Cho B = 12/(2 . 4 ) ^ 2 + 20/ (4 . 6) ^2 + ...........+ 388/ ( 96 . 98 ) ^ 2 + 396/ ( 98 . 100 ) ^2 .Hay so sanh B voi 1 /4
so sánh P và Q, biết \(P=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\) va \(Q=\frac{2015+2016+2017}{2016+2017+2018}\)
\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\)\(\frac{2017}{2016+2017+2018}\)
ta có :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
nên \(P>Q\)
Q=2015+2016+2017/2016+2017+2018=+2018+2016/2016+2017+2018+2017/2016+2017+2018
vì 2015/2016>2015/2016+2017+2018[1]
2016/2017>2016+2017+2018[2]
2017/2018>2016+2017+2018[3]
từ [1] [2] [3] suy ra P>Q
P=2015/2016 + 2016/2017+ 2017/2018 =>P>Q.
=>P>2015/2018 + 2016/2018 + 2017/2018 Thông cảm về cái phân số nhé
=>P>2015+2016+2017/2018
Vì 2015+2016+2017/2018 > 2015+2016+2017/2016+2017+2018=Q
Mà P>2015+2016+2017/2018
so sánh hai phân số 2015/2016 va 2016/2017
2015/2016 < 2016/2017 tick đúng nha duong khanh thu
So Sanh Hai Phan So Sau:
\(A=\frac{2014}{2015}-\frac{2015}{2016}+\frac{2016}{2017}-\frac{2017}{2018}\) VA \(B=-\frac{1}{2014.2015}-\frac{1}{2016.2017}\)
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
\(A=\frac{2014}{2015}-\frac{2015}{2016}+\frac{2016}{2017}-\frac{2017}{2018}=\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A>0;B=\frac{1}{2015}-\frac{1}{2014}+\frac{1}{2017}-\frac{1}{2016}\)
\(\Rightarrow B< 0\Rightarrow B< 0< A\Rightarrow A>B\)