Những câu hỏi liên quan
Hà Bùi
Xem chi tiết
๖Fly༉Donutღღ
28 tháng 5 2018 lúc 9:10

Ta có: \(a^2+b^2=4\left(gt\right)\Rightarrow2ab=\left(a+b\right)^2-4\)

\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Mà \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\)

\(\Rightarrow M\le\sqrt{2}-1\)

Dấu \("="\Leftrightarrow a=b=\sqrt{2}\)

Vậy GTLN của \(M=\frac{ab}{a+b+2}=\sqrt{2}-1\)khi \(a=b=\sqrt{2}\)

VRCT_Ran Love Shinichi
27 tháng 5 2018 lúc 22:34

Ta có a2+b2=4

<=> (a+b)2=4+2ab

<=> (a+b)2-4=2ab

<=> (a+b-2)(a+b+2)=2ab

<=> \(\frac{\left(a+b-2\right)\left(a+b+2\right)}{2}=ab\)

Ta có \(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}=\frac{a}{2}+\frac{b}{2}-1\)

Áp dụng BĐT Bunyakovsky cho 2 số a/2 và b/2 ta có

\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4\left(doa^2+b^2=4\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le2\)

\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\)

Do đó \(M=\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)

Vậy Max M = \(\sqrt{2}-1\)

Hà Bùi
28 tháng 5 2018 lúc 23:03

Cảm ơn nha!!

thục khuê nguyễn
Xem chi tiết
Bánh Bao Nhân Thịt
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Đào Thu Hoà
13 tháng 6 2019 lúc 17:58

Em mới tìm được Min thôi ạ, Max =\(2\sqrt{2}+4\)nhưng chưa biết cách giải , mọi người giúp với ạ

áp dụng bất đẳng thức AM-GM cho 3 số ta có:

\(a^3+b^3+1\ge3\sqrt[3]{a^3b^3.1}=3ab\)

\(\Rightarrow M=\frac{a^3+b^3+4}{ab+1}=\frac{\left(a^3+b^3+1\right)+3}{ab+1}\ge\frac{3ab+3}{ab+1}=3\)

Vậy giá trị nhỏ nhất của M=3 khi \(\hept{\begin{cases}a^2+b^2=2\\a^3=b^3=1\end{cases}\Rightarrow}a=b=1\)

Nguyễn Thị Ngọc Thơ
13 tháng 6 2019 lúc 20:48

\(0\le a\le\sqrt{2}\Rightarrow a\left(a-\sqrt{2}\right)\le0\Rightarrow a^2\le a\sqrt{2}\Rightarrow a^3\le a^2\sqrt{2}\)

Tương tự và cộng lại: \(a^3+b^3\le\sqrt{2}\left(a^2+b^2\right)=2\sqrt{2}\)

\(\Rightarrow M\le\frac{2\sqrt{2}+4}{ab+1}\le\frac{2\sqrt{2}+4}{1}=2\sqrt{2}+4\) (do \(ab\ge0\Rightarrow ab+1\ge1\))

Dấu "=" khi \(\left(a;b\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)

Darlingg🥝
13 tháng 6 2019 lúc 17:46

Trong hỏi đáp có mà cô ơi:https://olm.vn/hoi-dap/detail/205202930737.html

Ngọc Hà
Xem chi tiết
kevin
11 tháng 5 2023 lúc 14:01

Ta có thể giải bài toán này bằng cách sử dụng phương pháp điều chỉnh biểu thức P để biểu thức này có thể được phân tích thành tổng của các biểu thức có dạng a(x-y)+b(y-z)+c(z-x), trong đó x,y,z là các số thực không âm. Khi đó, ta có:

P = ab + bc - ca = a(b-c) + b(c-a) + c(a-b) = a(-c+b) + b(c-a) + c(-b+a) = a(x-y) + b(y-z) + c(z-x), với x = -c+b, y = c-a và z = -b+a

Do đó, để tìm giá trị lớn nhất của P, ta cần tìm các giá trị lớn nhất của x, y, z. Ta có:

x = -c+b ≤ b, vì c ≥ 0 y = c-a ≤ c ≤ 2022, vì a+b+c = 2022 z = -b+a ≤ a, vì b ≥ 0

Vậy giá trị lớn nhất của P là:

P_max = ab + bc - ca ≤ b(2022-a) + 2022a = 2022b

Tương tự, để tìm giá trị nhỏ nhất của P, ta cần tìm các giá trị nhỏ nhất của x, y, z. Ta có:

x = -c+b ≥ -2022, vì b ≤ 2022 y = c-a ≥ 0, vì c ≤ 2022 và a ≥ 0 z = -b+a ≥ -2022, vì a ≤ 2022

Vậy giá trị nhỏ nhất của P là:

P_min = ab + bc - ca ≥ (-2022)a + 0b + (-2022)c = -2022(a+c)

Do đó, giá trị lớn nhất của P là 2022b và giá trị nhỏ nhất của P là -2022(a+c).

29 Phúc Hưng
Xem chi tiết
~$Tổng Phước Yaru😀💢$~
20 tháng 3 2022 lúc 10:50

1

Áp dụng BĐT Cauchy cho 2 số dương:

4ac=2.b.2c≤2(b+2c2)2≤2(a+b+2c2)2=2.(12)2=12

⇒−4bc≥−12

⇒K=ab+4ac−4bc≥−4bc≥−12

Khách vãng lai đã xóa
Tạ Uyên
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 12 2021 lúc 19:49

Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)

\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)

\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

Nguyễn Thế Hiếu
Xem chi tiết
Akai Haruma
29 tháng 3 2021 lúc 21:26

Lời giải:

Đặt $a+b+c=p; ab+bc+ac=q=1; abc=r$

$p,r\geq 0$

Áp dụng BĐT AM-GM: $p^2\geq 3q=3\Rightarrow p\geq \sqrt{3}$

$a,b,c\leq 1\Leftrightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow p+r\leq 2\Rightarrow p\leq 2$

$P=\frac{(a+b+c)^2-2(ab+bc+ac)+3}{a+b+c-abc}=\frac{(a+b+c)^2+1}{a+b+c-abc}=\frac{p^2+1}{p-r}$

Ta sẽ cm $P\geq \frac{5}{2}$ hay $P_{\min}=\frac{5}{2}$

$\Leftrightarrow \frac{p^2+1}{p-r}\geq \frac{5}{2}$

$\Leftrightarrow 2p^2-5p+2+5r\geq 0(*)$

---------------------------

Thật vậy:

Áp dụng BĐT Schur thì:

$p^3+9r\geq 4p\Rightarrow 5r\geq \frac{20}{9}p-\frac{5}{9}p^3$

Khi đó:

$2p^2-5p+2+5r\geq 2p^2-5p+2+\frac{20}{9}p-\frac{5}{9}p^3=\frac{1}{9}(2-p)(5p^2-8p+9)\geq 0$ do $p\leq 2$ và $p\geq \sqrt{3}$

$\Rightarrow (*)$ được CM

$\Rightarrow P_{\min}=\frac{5}{2}$

Dấu "=" xảy ra khi $(a,b,c)=(1,1,0)$ và hoán vị

Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 1 2021 lúc 16:39

1.

- Với \(a+b\ge4\Rightarrow A\le0\)

- Với \(a+b< 4\Rightarrow4-a-b>0\)

\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)

\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)

\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)

2.

\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)

\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)

\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)

 

Nguyễn Việt Lâm
4 tháng 1 2021 lúc 16:45

Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai

Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút

Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)

 

Nguyễn Việt Lâm
7 tháng 1 2021 lúc 21:50

Nếu câu 3 đề là \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)

Ta có:

\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{16xy}{\left(x-y\right)^2}=\dfrac{x^2+y^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)

\(VT=\dfrac{x^2+y^2-2xy+2xy}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)

\(VT=\dfrac{\left(x-y\right)^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+4\ge2\sqrt{\dfrac{16xy\left(x-y\right)^2}{xy\left(x-y\right)^2}}+4=12\)