Cm nếu a/b=c/d thì (a+b/c+d)^2=a^2+b^2/c^2+d^2
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
1. CM:
a) Nếu \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) thì \(a^2=bc\)
b) Nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{\left(a+b\right)^2}{a^2-b^2}=\frac{\left(c+d\right)^2}{c^2-d^2}\)
c) Nếu \(\frac{a-c}{b-c}=\frac{b+c}{a+c}\)thì a=b
1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c
Bài 1 nếu a+b/c-d =c+d/c-d thì a/b = c/d
Bài 2 nếu b^2=a.c thì a/c=(a+2007b)^2/(b+2007c)^2
Bài1:CMR từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức 5a+4b/5a-4b=5c+4d/5c-4d
Bài 2: a)CMR nếu a/b=c/d thì a^2+b^2/b^2+c^2=a/c b)Nếu a/b=b/c=c/d thì(a+b-c/b+c-d)^3=a/d
cho a,b,c khác 0 và a^2=b.c
CMR:a^2+c^2/b^2+d^2=c/b
CMR: nếu a/b=c/d thì a^2+b^2=b^2+d^2=a/d
CMR với số thực a,B,c,d,e thì a^2+b^2+c^2+d^2+e^2 lớn hơn hoặc bằng 0
CM hộ e nhé nếu dùng đẳng thức lm ơn CM luôn đẳng thức ạ
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²
= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:
. a²/4 + c² ≥ ac
. a²/4 + d² ≥ ad
. a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m
Dấu " = " xảy ra <=> a/2 = b = c = d = e
P/s: Hơi hơi dễ nhỉ
CMR với số thực a,B,c,d,e thì a^2+b^2+c^2+d^2+e^2 lớn hơn hoặc bằng 0
CM hộ e nhé nếu dùng đẳng thức lm ơn CM luôn đẳng thức ạ
Cmr nếu a/b=c/d thì
a. a+b/a-b=c+d/c-d
b. (a+b)^2/(a-b)^2=(c+d)^2/(c-d)^2
c. 2a+5b/3a-4b=2c+5d/3c-4d