Tìm x,y thuộc z để biểu thức sau có giá trị nguyên:M= \(\frac{xy+x+5}{xy+x+4}\)
Tìm x,y thuộc Z để biểu thức sau có giá trị nguyên: M = \(\frac{xy+x+5}{xy+x+4}\)
Tìm x,y thuộc Z để biểu thức sau có giá trị nguyên \(M=\frac{xy+x+1}{xy+x}\)
\(M=\frac{xy+x+1}{xy+x}=1+\frac{1}{xy+x}\)
Để M nguyên <=> 1 chia hết cho xy +x hay xy +x là ước của 1
=> xy + x = 1 hoặc xy + x = -1
Nếu xy + x = 1 => x.(y+1) = 1 mà x, y nguyên nên x thuộc Ư(1) = {1;-1}
x = 1 => y+ 1 = 1 => y = 0
x = -1 => y + 1 = -1 => y = -2
Nếu xy + x = -1 => x.(y+1)= -1 => x thuộc Ư(1) = {1;-1}
x = 1 => y + 1 = -1 => y = -2
x = -1 => y + 1 = 1 =>y = 0
Vậy (x;y) = (1;0); (-1; -2); (1;-2); (-1;0)
hãy tìm giá trị của x trong các biểu thức sau biết x thuộc Z : \(\dfrac{2}{x}+\dfrac{1}{y}=3\) ; \(\dfrac{2}{y}-\dfrac{1}{x}=\dfrac{8}{xy}+1\) ; \(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\) ; \(\dfrac{-3}{y}-\dfrac{12}{xy}=1\) ; \(\dfrac{x}{8}-\dfrac{1}{y}=\dfrac{1}{4}\).
help me pls!
Cho biểu thức \(A=\frac{\left|xy\right|}{xy}-\frac{\left|xy\left(x-y\right)\right|}{xy\left(x-y\right)}\left(\frac{\left|x\right|}{x}-\frac{\left|y\right|}{y}\right)\). CMR giá trị của biểu thức A không phụ thuộc vào giá trị của x, y
CMR biểu thức sau có giá trị nguyên \(A=\frac{xy+2y+1}{xy+x+y+1}+\frac{yz+2z+1}{yz+y+z+1}+\frac{zx+2x+1}{zx+z+x+1}\)
(Với \(x,y,z\in R;x,y,z\ne-1\))
\(A=\frac{xy+2y+1}{xy+x+y+1}+\frac{yz+2z+1}{yz+y+z+1}+\frac{zx+2x+1}{zx+z+x+1}\)
\(=\frac{y\left(x+1\right)+y+1}{\left(x+1\right)\left(y+1\right)}+\frac{z\left(y+1\right)+z+1}{\left(y+1\right)\left(z+1\right)}+\frac{x\left(z+1\right)+x+1}{\left(z+1\right)\left(x+1\right)}\)
\(=\frac{y}{y+1}+\frac{1}{x+1}+\frac{z}{z+1}+\frac{1}{y+1}+\frac{x}{x+1}+\frac{1}{z+1}\)
\(=\frac{y+1}{y+1}+\frac{z+1}{z+1}+\frac{x+1}{x+1}=3\)
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
tìm x , y thuộc Z
x + y + xy = 2
tìm giá trị lớn nhất của biểu thức
Q = \(\frac{27-2x}{12-x}\)( x là số nguyên )
Cho x,y,z thuộc R thỏa mãn xy + yz + zx = 5. Tìm giá trị nhỏ nhất của biểu thức 3x^2 + 3y^2 + z^2
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)Cho các số thực x,y,z\(\ne\)0(sau). Tính giá trị biểu thức M\(=\frac{x^{^2}+y^2+z^2}{xy+yz+xz}\). Giúp mình với.
\(x;y;z\ne0\). Giả thiết của đề bài:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)
=> x = y = z
Do đó, M = 1.