cho 2 so tu nhien a,b .Biết a chia 5 dư 2 và b chia 5 dư 3 . Chứng minh ab chia 5 dư 1
1. Cho hai số tự nhiên a và b, biết a chia cho 6 dư 2 và b chia cho 6 dư 3. Chứng minh rằng ab chia hết cho 6
2. Cho a và b là hai số tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
a )cho a và b là 2 số tự nhiên. Biết a chia 3 dư 1, b chia 3 dư 2. chứng minh ab chia 3 dư 2
b) biết số tự nhiên a chia 5 dư 4.Chứng minh a2 chia 5 dư 1
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
cho 2 số tự nhiên a , b . biết a chia 5 dư 2 và b chia 5 dư 3 . chứng minh ab chia 5 dư 1
Theo đề bài ta có:
a\(\equiv\)2(mod 5)
b\(\equiv\)3 ( mod 5)
=> ab\(\equiv\)2 x 3 ( mod 5 )
ab\(\equiv\)6 ( mod 5)
ab\(\equiv\)1 ( mod 5 )
Vậy ab chia 5 dư 1.
Học tốt nha bn
Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 2 và b chia cho 5 du 3 . Chứng minh rằng ab chia cho 5 dư 1
Đặt \(a=5k+2\)
\(b=5h+3\)
\(\Rightarrow ab=\left(5k+2\right)\left(5h+3\right)\)
\(=25kh+15k+10h+6\)
\(=25kh+15k+10h+5+1\)
\(=5\left(5kh+3k+2h+1\right)+1\) chia 5 dư 1.
Vậy ab chai 5 dư 1.
Cho 2 số tự nhiên a và b , biết a chia 5 dư 3 , b chia 5 dư 2 . Chứng minh a.b chia 5 dư 1
Dễ mà . Em học lớp 6 cũng làm được.
Giả sử a=(c+3) ; b =(d+2) (c ;d chia hết cho 5)
a.b=(c+3) . (d+2)
a.b=(c+3) . d + (c+3) .2
a.b=c.d+3.d+2.c+6
vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1
Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !
Ngoài cửa chợt có tiếng gõ cửa mạnh vang dội vào trong nhà, Huy đang ngủ say liền giật mình tỉnh dậy. Đầu anh đau như búa bổ, hai mắt anh khẽ nheo lại để cố sức chặn đứng những tia sáng của ngày sớm.
Huy loạng choạng đứng dậy đi về phía cửa, kéo thanh chốt cài cửa xuống rồi dụi mắt nhìn quanh xem có ai không.
Dưới tiết trời sáng và âm u, gió lạnh hơi hiu hiu thổi qua, Huy tự nhẩm cái thời tiết này mà cũng có người mò qua đây làm gì không biết. Anh không biết là liệu có phải có con ma nào nó trêu mình vào giờ này hay không? Vì rõ là trời còn sớm mà, ngẩng lên nhìn đồng hồ thì mới chỉ có năm giờ sáng mà thôi. Giờ này người ta có dậy sớm thì cũng đi làm đồng chứ qua nhà Huy để làm cái gì?
một số tự nhiên khi chia cho 3 dư 1 chia 4 dư 2 chia 5 dư 3 chia 6 dư 4 và chia hết cho 13
a, tìm dạng tổng quát
b, tim so tu nhien nho nhat thoa man
Câu a)
Gọi đó là số A. Nhận thấy A+2 chia hết cho 3;4;5;6
=> A+2 nhỏ nhất = BSCNN(3,4,5,6) = 60
Số A có dạng tổng quát, với n là số tự nhiên, là
A= 60.n-2
Vấn đề còn lại là tìm điều kiện của số tự nhiên n để Achc 13. Ta có:
A= 65.n -5.n-15+13
A=13.(5.n+1) - 5.(n+3)
Từ đẳng thức trên ta thấy, để A chia hết cho 13 thì 5.(n+3) phải chia hết cho 13 => (n+3) phải chia hết cho 13 => n= 13.k-3 với k là số tự nhiên, k=1,2,3...
khi đó:
A=60.(13.k-3)-2
A=780.k-182
Câu b)
Số nhỏ nhất thỏa mãn đề bài ứng với k=1, khi đó
A=598
Cho a, b là hai số tự nhiên. Biết a chia cho 5 dư 3, b chia cho 5 dư 4. Chứng minh rằng ab chia cho 5 dư 2.
a chia 5 dư 3 =>a=5k+3
a chia 5 dư 4 =>a=5c+4
=>ab=(5k+3)(5c+4)=(5k+3)5c+(5k+3)4=(5k+3)5c+5.4k+12
=5[(5k+3)c+4k]+5.2+2=5[(5k+3)c+4k+1]+2 chia 5 dư 2
=>đpcm
a)cho a,b là 2 số tự nhiên. Số a chia 5 dư 1, số b chia 5 dư 2. Chứng minh rằng ab chia 5 dư 2
b) số a gồm 31 chữ số 1, số b gồm 38 chữ số 1. Chứng minh rằng ab-2 chia hết cho 3