Cho \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{c+a}\). Tính \(M=\frac{ab+bc+ac}{a^2+b^2+c^2}\)
cho M =\(\frac{b-c}{a^2-ac-ab+bc}+\frac{c-a}{b^2-ab-cb+ca}+\frac{a-b}{c^2-bc-ac+ab}\) và N=\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\) cmr M=2N
\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)
Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)
Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)
\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)
Cho a, b, c là ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(các giả thiết đều có nghĩa)
Tính giá trị của biểu thức:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)
Tham khảo: Câu hỏi của Đậu Đình Kiên
Cho a,b,c khác 0 thỏa mãn ab+bc+ac=0 . Tính A = \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
Vào đây nhé: https://hoc24.vn/hoi-dap/question/821240.html?pos=2125078
Mình đã trả lời rồi :3
CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ac} + \frac{1}{3} \geq \frac{8}{9}(\frac{a}{b+c} + \frac{b}{a+c} +\frac{c}{a+b})\)
CMR:\((1+a+b+c)(1+ab+bc+ac) \geq 4\sqrt{2(a+bc)(b+ac)(c+ab)}\)
Cho a,b,c khác 0 thỏa mãn
\(\frac{ab}{a+b}\)= \(\frac{bc}{b+c}\)= \(\frac{ac}{a+c}\)
Tính M: \(\frac{ab+bc+ac}{a^2+b^2+c^2}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) (1)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\frac{ac+bc}{abc}=\frac{ab+ac}{abc}=\frac{ab+bc}{abc}\)
\(\Rightarrow ac+bc=ab+ac=ab+bc\)
\(\Rightarrow ab=ac=bc\) (2)
Từ (1) và (2)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{3a^2}{3a^2}=1\)
Vậy M = 1
Cho ab+bc+ac=0. Tính \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\).
Cho a,b,c >0 TM ab+bc+ac=3abc CMR
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath
\(\frac{a^2b+bc^2-1}{ac\left(a+c\right)}+\frac{b^2c+ca^2-1}{ab\left(a+b\right)}+\frac{c^2a+ab^2-1}{bc\left(b+c\right)}\)
\(=\frac{a^2b^2+b^2c^2-b}{a+c}+\frac{b^2c^2+c^2a^2-c}{a+b}+\frac{c^2a^2+a^2b^2-a}{b+c}\)
\(=\frac{\frac{1}{a^2}-\frac{1}{ac}+\frac{1}{c^2}}{a+c}+\frac{\frac{1}{b^2}-\frac{1}{ab}+\frac{1}{a^2}}{a+b}+\frac{\frac{1}{c^2}-\frac{1}{bc}+\frac{1}{b^2}}{b+c}\ge\frac{1}{ac\left(a+c\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ab\left(b+a\right)}\)
\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha