Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Linh Nhi
Xem chi tiết
Nguyễn Đức Mạnh
Xem chi tiết
Lee Min Ho club
11 tháng 6 2016 lúc 22:00

1/3+1/6+1/10+...+2/[x.(x+1)]= 2011/2013
12(13+16+...1x(x+1)=2011201312(13+16+...1x(x+1)=20112013
12.3+13.4+14.5+...+1x(x+1)=2011201312.3+13.4+14.5+...+1x(x+1)=20112013
12−13+13−14+...+1x−1x+1=2011201312−13+13−14+...+1x−1x+1=20112013 
12−1x+1=2011201312−1x+1=20112013 
1x+1=12−201120131x+1=12−20112013 
1x+1=−200940261x+1=−20094026 
(x+1).−2009=4026(x+1).−2009=4026 
−2009x+(−2009)=4026−2009x+(−2009)=4026 
−2009x=4026−(−2009)−2009x=4026−(−2009) 
−2009x=6035−2009x=6035 
x=−60352009

George H. Dalton
Xem chi tiết
Thiên Hàn
30 tháng 8 2018 lúc 17:03

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{4020}{2011}:2\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{x+1}=-\dfrac{2009}{4022}\)

\(\Rightarrow4022=-2009\left(x+1\right)\)

\(\Rightarrow4022=-2009x-2009\)

\(\Rightarrow2009x=-2009-4022\)

\(\Rightarrow2009x=-6031\)

\(\Rightarrow x=-\dfrac{6031}{2009}\)

Lê Hoàng Bảo Thư
Xem chi tiết
Không Có Tên
13 tháng 8 2017 lúc 15:36

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)(nhân mỗi vế với 1/2)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}=\frac{1}{2011}\)

\(\Rightarrow x+1=2011\Rightarrow x=2010\)

Phạm Tuấn Đạt
13 tháng 8 2017 lúc 16:14

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)\(=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)

\(\Rightarrow x+1=2011\)

\(\Rightarrow x=2010\)

Vu Huu Duc
3 tháng 10 2017 lúc 18:43

 = 2010

le syn dùog
Xem chi tiết
Hồ Thu Giang
12 tháng 7 2015 lúc 22:06

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{x\left(x+1\right):2}=\frac{2001}{2003}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{2003}:2=\frac{2001}{4006}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}=\frac{1}{2003}\)

=> x+1 = 2003

=> x = 2003 - 1

=> x = 2002

le syn dùog
12 tháng 7 2015 lúc 22:14

thank you very much

 

soyeoncute
Xem chi tiết
hwang minhyun
Xem chi tiết
Mỹ Linh
Xem chi tiết
Kẻ Ẩn Danh
11 tháng 9 2017 lúc 18:25

\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x.\left(x+1\right)}=1\)

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x.\left(x+1\right)}=1\)

\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=1\)

Kẻ Ẩn Danh
11 tháng 9 2017 lúc 18:26

MK chưa làm xong đợi mk ăn cơm xong làm nha

nguyen ngoc  anh
Xem chi tiết
nguyen ngoc  anh
8 tháng 12 2017 lúc 19:34

giup minh tra loi nha