Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Đoàn Tuấn Anh
Xem chi tiết
Đặng Thị Hồng Nhung
Xem chi tiết
Phan Văn Hiếu
27 tháng 7 2016 lúc 19:49

|x-2011|+|x-2| = |x-2|+|2011-x|\(\ge\)|x-2+2011-x|=2009

vậy  GTNN của biểu thức: |x-2011|+|x-2| là 2009 \(\Leftrightarrow\)x=2

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 19:52

\(x^{2011}+x^{2011}+1+...+1\) (2009 số 1) \(\ge2011\sqrt[2011]{x^{4022}}=2011x^2\)

Tương tự:

\(2y^{2011}+2009\ge2011y^2\)\(2z^{2011}+2009\ge2011z^2\)

Cộng vế:

\(2\left(x^{2011}+y^{2011}+z^{2011}\right)+6027\ge2011\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2011\left(x^2+y^2+z^2\right)\le6033\)

\(\Rightarrow x^2+y^2+z^2\le3\)

Bạch Ngọc Đường
Xem chi tiết
Nyatmax
18 tháng 12 2019 lúc 18:45

Ta co:

\(x+3y\ge6\Rightarrow y\ge2-\frac{x}{3}\)

\(\Rightarrow P\ge\frac{2}{3}x+\frac{6}{x}+2013\ge2\sqrt{\frac{2}{3}x.\frac{6}{x}}+2013=2017\)

Dau '=' xay ra khi \(x=3;y=1\)

Khách vãng lai đã xóa
Phat Huynh
Xem chi tiết
Feed Là Quyền Công Dân
11 tháng 8 2017 lúc 18:46

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(B=\left|x-2011\right|+\left|x-2\right|\)

\(=\left|x-2011\right|+\left|2-x\right|\)

\(\ge\left|x-2011+2-x\right|=2009\)

Xảy ra khi \(2\le x\le2011\)

 Mashiro Shiina
11 tháng 8 2017 lúc 23:15

\(\left|x-2011\right|+\left|x-2\right|=\left|x-2011\right|+\left|2-x\right|\)

Áp dụng bđt:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\Rightarrow\left|x-2011\right|+\left|2-x\right|\ge\left|x-2011+2-x\right|\)

\(\Rightarrow\left|x-2011\right|+\left|2-x\right|\ge2009\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2011\ge0\Rightarrow x\ge2011\\2-x\ge0\Rightarrow x\le2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2011< 0\Rightarrow x< 2011\\2-x< 0\Rightarrow x>2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow2< x< 2011\)

Lê Quang Minh
Xem chi tiết
Kim Seok Jin
Xem chi tiết
ST
14 tháng 1 2018 lúc 9:31

c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)

Vậy MinC = 2500 khi 50 =< x =< 56

ST
14 tháng 1 2018 lúc 9:23

a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1

Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)

Vậy MinA = 1 khi 2011 =< x =< 2012

b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011| 

Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)

Mà \(\left|x-2011\right|\ge0\forall x\)

\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)

Vậy MinB = 2 khi x = 2011

Câu c để nghĩ 

Thành Nguyễn Quốc
2 tháng 4 2019 lúc 20:10

hello