( x + y + z )^2 + (y - z )^2 + 2 ( x + y + z ) × ( z - y ) Các bạn giúp mình với
các bạn giải giúp mình với \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}>=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)\(\frac{z}{x}\)với các số x,y,z>0
các bạn bỏ giúp mình chữ z/x đằng sau đi nhé!! mình viết nhầm
Các bạn giúp mình với. Mình cảm ơn ạ.
Cho : (x-y)^2+(y-z)^2+(z-x)^2= 4(x^2+y^2+z^2 -xy-yz-zx)
Chứng minh x=y=z.
(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 0
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0
<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0
<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0
<=> x - y = 0 và y - z = 0 và z - x = 0
<=> x = y và y = z và z = x
<=> x = y = z
tính x,y,z,biết
x / y + z +1 = y / x + z +1 = z / x + y - 2
Giúp mình với các bạn ơi
giải bài toán tìm x,y,z biết x/2=y/3=z/4 và x^2+y^2+z^2=116
các bạn giải giúp mình với
ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
\(\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=6,z=8\\x=-4,y=-6,z=-8\end{cases}}\)
Đặt \(N:\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow N^2=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
\(\Leftrightarrow N=\pm2\)
Nếu \(N=\left(-2\right)\):
\(\frac{x}{2}=-2\Leftrightarrow y=-4\)
\(\frac{y}{3}=-2\Leftrightarrow y=-6\)
\(\frac{z}{4}=-2\Leftrightarrow y=-8\)
Nếu \(N=2\):
\(\frac{x}{2}=2\Leftrightarrow y=4\)
\(\frac{y}{3}=2\Leftrightarrow y=6\)
\(\frac{z}{4}=2\Leftrightarrow y=8\)
Sửa lại giúp mình vài chỗ:
Nếu \(N=\left(-2\right)\)
\(\frac{x}{2}=-2\Leftrightarrow z=-4\)
\(\frac{z}{4}=-2\Leftrightarrow z=-8\)
Nếu \(N=2\)
\(\frac{x}{2}=2\Leftrightarrow x=4\)
\(\frac{z}{4}=2\Leftrightarrow z=8\)
Cho x+y+z=0 và x khác y khác z.Tính
\(A=\frac{x^2}{x^2-y^2-z^2}+\frac{y^2}{y^2-z^2-x^2}+\frac{z^2}{z^2-x^2-y^2}\)
\(B=\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
Các bạn giúp mình nhanh với
Tìm x, y, z biết :x/2=y/3, y/4=z/5 va x^2-y^2=-16
Các bạn ơi giúp mình với !!
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{5}.64=12,8\\y^2=\frac{1}{5}.144=28,8\\z^2=\frac{1}{5}.225=45\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm\sqrt{12,8}\\y=\pm\sqrt{28,8}\\z=\pm\sqrt{45}\end{cases}}\)
Với \(x=\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=\sqrt{28,8}\\z=\sqrt{45}\end{cases}}\)
Với \(x=-\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=-\sqrt{28,8}\\z=-\sqrt{45}\end{cases}}\)
Biết \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2016\). Tính giá trị biểu thức \(P=\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\).
(Giải chi tiết giúp mình nhé)
Mình sẽ kêu gọi bạn bè mình tích cho. Cảm ơn các bạn.
Các bạn ơi giúp mình nha!!!!
Cho \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2018\) . Tính \(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}?\)
x/2=y/3=z=5 và (x-y)^2+(y-z)^2=20
Giúp mình với các bạn nha!