Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen vu hoang minh
Xem chi tiết
Nguyễn Anh Quân
6 tháng 8 2017 lúc 20:45

2.E = 4x^2 -  12x

= ( 4x^2 - 12x + 9 ) -9

=(2x-3)^2 - 9 >= -9 

<=> E >= -18 

Dấu "=" xảy ra <=> 2x-3 = 0 <=> x=3/2

Vậy GTNN của E là E = -18 <=> x =3/2

l҉o҉n҉g҉ d҉z҉
6 tháng 8 2017 lúc 20:47

Ta có : E = 2x2 - 6x 

=> E = 2(x2 - 6x + 9 - 9)

=> E = 2(x2 - 6x + 9) - 18

=> E = 2(x - 3)2 - 18

Mà ;  2(x - 3)2 \(\ge0\forall x\)

Nên: E = 2(x - 3)2 - 18 \(\ge-18\forall x\)

Vậy Emin = -18 khi x = 3

Thi Oanh
Xem chi tiết
Nguyen vu hoang minh
Xem chi tiết
Tran Bui Thu Trang
Xem chi tiết
Đinh Đức Hùng
27 tháng 7 2017 lúc 16:56

\(P=\frac{x^2-2x+1989}{x^2}\)

\(\Leftrightarrow Px^2=x^2-2x+1989\)

\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)

\(\Delta=4-4\left(1-P\right)1989\ge0\)

\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1989\)

Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989

ngoc anh nguyen
Xem chi tiết
Đinh Đức Hùng
14 tháng 3 2017 lúc 13:56

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

lemailinh
Xem chi tiết
nguyen thu phuong
1 tháng 2 2018 lúc 20:04

Nhỏ nhất:

D có giá trị nhỏ nhất khi: (x + 5)2 = 0 và (2y - 6)2 = 0

(x + 5)2 = 0

(x + 5)= 02

=> x + 5 = 0

         x   = 0 - 5

         x   = -5

(2y - 6)2 = 0

(2y - 6)2 = 02

=> 2y - 6 = 0

        2y   = 0 + 6

         2y  = 6

            y = 6 : 2

            y = 3

Ta có: D = 0 + 0  + 1 = 1

Lớn nhất:(không có giá trị lớn nhất)

lemailinh
1 tháng 2 2018 lúc 19:58

GIÚP MÌNH VỚI

LÀM ƠN

Nguyen Minh Quan
Xem chi tiết
Đỗ Lê Tú Linh
16 tháng 12 2015 lúc 21:34

Vì |x-3| luôn lớn bằng 0 với mọi x

=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x

=> A luôn lớn bằng 100

Dấu "=" xảy ra <=> |x-3| = 0

=> x - 3 = 0

=> x = 3

Vậy Min A = -100 <=> x = 3

Đinh Tuấn Việt
16 tháng 12 2015 lúc 21:34

Ta có |x - 3| > 0

=> |x - 3| + (-100) > - 100

hay A > 100

Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3

Nguyễn Trúc Phương
Xem chi tiết
Thắng Nguyễn
21 tháng 6 2016 lúc 18:40

a)Ta thấy:

\(\left(2x+\frac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^2-\frac{5}{6}\ge0-\frac{5}{6}=-\frac{5}{6}\)

\(\Rightarrow A\ge-\frac{5}{6}\)

Dấu "=" <=>x=-1/6

Vậy MinA=-5/6<=>x=-1/6

b)Ta thấy:\(\hept{\begin{cases}\left|2x+3\right|\\\left|y-\frac{1}{2}\right|\end{cases}\ge}0\)

\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|\ge0\)

\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)

\(\Rightarrow B\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|2x-3\right|=0\\\left|y-\frac{1}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy...

Hòa An Nguyễn
Xem chi tiết
 Mashiro Shiina
10 tháng 8 2017 lúc 18:30

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

Serena chuchoe
10 tháng 8 2017 lúc 18:31

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^