a,\(B=\frac{33....33}{2015chữsố3}.\frac{333..3}{2015chữs3}=?\)
Rút gọn phân số:
a, A=\(\frac{266....6}{66...65}\)( n chữ số 6, n\(\varepsilon\)N* )
b, B=\(\frac{3+33+333+33...3(2015cs3)}{33...3(2016cs3)-3.2016}\)
tính nhanh:
B=\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
A=\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
B=\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
B= \(\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
B=\(\frac{3}{4}\)
Sau mình làm tiếp vội quá! k mình nha
tìm kết quả của phép nhân sau:
a. 333...33 x 999...99 b. 333...33 x 333...33
(n chữ số 3) (n chữ số 9) (n chữ số 3) (n chữ số 3)
B=3+33+333+3333+.....+33..33(10 số 3).Tính tổng B
B = 3 + 33 + 333 + ... + 33...33(10 số 3)
= 3[1 + 11 + 111 + ... + 11...11(10 số 1)]
= 3 . 1 234 567 900
= 3 703 703 700
3+33+333+3333+...+33..333
Số 33...333 có 10 chữ số 3)
Giải chi tiết dùm nhé
#Toán lớp 6Đề yêu cầu gì thế em?
Tính tổng hay tìm chữ số tận cùng của tổng em nhỉ?
\(1-333+3^2-33^3+......+\left(-3\right)^x=\frac{9^{1006}-1}{4}\)
tim x
3+33+333+3333+...+33..333
Số 33...333 có 10 chữ số 3)
Giải chi tiết dùm nhé
mà yêu cầu bài là gì? Bạn k viết ra sao mà làm đc
tuấn anh nhìn là biết yêu cầu tính rồi
chứng tỏ \(\frac{1111...11}{n}\)-\(\frac{222...22}{n}\)=\(\frac{\left(333...33\right)^2}{n}\)
Tính nhanh:
\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)
\(=\frac{33.3+33.3+33.3+33.3+33.3}{486}\)
\(=\frac{99.5}{486}\)
\(=\frac{495}{486}\)
Gọi \(A=\frac{33}{2}+\frac{33}{6}+...+\frac{33}{486}\)
\(A=33.\left[\left(\frac{1}{1.2}+\frac{1}{2.3}\right)+\left(\frac{1}{3.6}+\frac{1}{6.9}\right)\left(\frac{1}{9.18}+\frac{1}{18.27}\right)\right]\)
\(A=33.\left[\frac{2}{3}+\frac{2}{9}+\frac{2}{27}\right]\)
\(A=66.\left[\frac{9}{27}+\frac{3}{27}+\frac{1}{27}\right]\)
\(A=66.\frac{13}{27}\)
\(A=\frac{286}{9}\)
sai hay đúng cx ko biết nha
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(=1+\frac{2}{3}-\frac{2}{3}+\frac{2}{5}-\frac{2}{5}+....+\frac{2}{15}\)
\(=1+\frac{2}{15}\)
\(=\frac{17}{15}\)