Cho tam giác ABC có cạnh là a,b,c biet:
[1+b/a].[1+c/b].[1+a/c]=8
Chứng minh tam giác ABC đều
Cho tam giác ABC có ba cạnh a,b,c biet: [1+b/a].[1+c/b].[1+a/c]=8
Chứng minh tam giác ABC đều
Gọi a,b,c là ba cạnh của tam giác ABC biết: [1+b/a].[1+c/b].[1+a/c]=8
Chứng minh tam giác ABC đều
CM bất đảng thức :
\(a+b\ge2\sqrt{ab}\)
XH : a + b - 2\(\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Áp dụng BĐT : ...
Tam giác ABC có chu vi bằng 1 các cạnh a,b,c thỏa mãn đẳng thức:
a/1-a + b/1-b + c/1-c=3/2 chứng minh tam giác ABC đều
Gọi a,b,c là độ dài 3 cạnh của tam giác ABC, biết rằng :
(1+ b/a)(1+ c/b)+(1+ a/c) =8
Chứng minh rằng tam giác ABC là tam giác đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{a^2b^2c^2}=64\)(*)
Ta có :\(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\) ; \(\left(c+a\right)^2\ge4ca\)
Suy ra vế trái của (*) lớn hơn hoặc = 64. Dấu đẳng thức xảy ra khi a = b = c. Khi đó tg ABC đều.
chưngs minh tam giác abc đều mà sao lại nói tam giác abc ko đều
Cho a,b,c là độ dài 3 cạnh tam giác ABC
Biết : (1+b/a)*(1+c/b)*(1+a/c)
CMR tam giác ABC đều
Cho tam giác ABC có độ dài 3 cạnh a, b, c thỏa mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}=9\)
Chứng minh rằng tam giác ABC đều
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
ta áp dụng (a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) >=9
dễ chứng minh bdt phụ này
rùi từ đây suy ra 3(a-b)(b-c)(c-a) = 0 => a=b=c (1)
mà lên bđt phụ trên thì xảy ra khi a=b=c (1)
từ (1) , (2) , ta suy ra a=b=c hay đpcm
vì k chặt chẽ lắm nên thông cảm
cho tam giác ABC có độ dài ba cạnh là a,b,c sao cho a^2+b^2+c^2 = ab+bc+ca . chứng minh rằng tam giác ABC là tam giác đều
a^2+b^2+c^2=ab+bc+ac
=>2a^2+2b^2+2c^2=2ab+2bc+2ac
<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
<=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a-b=b-c=c-a=0
=>a=b;b=c;c=a
=>a=b=c
=>tam giác abc là tam giác đều
Cho tam giác ABC có ba cạnh a,b,c biet:
[1=b/a].[1+c/b]+[1+a/c]=8
cho a,b,c là 3 cạnh của một tam giác ABC
(1+b/a)(1+c/b)(1+a/c)=8
cmw a,b,c là 3 cạnh của 1 tam giác đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)
\(\Leftrightarrow\) \(\left(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\right)\left(1+\frac{a}{c}\right)=8\)
\(\Leftrightarrow\) \(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+1=8\)
\(\Leftrightarrow\) \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{c}{b}+\frac{b}{c}-2\right)+\left(\frac{c}{a}+\frac{a}{c}-2\right)=0\)
\(\Leftrightarrow\) \(\frac{a^2+b^2-2ab}{ab}+\frac{c^2+b^2-2bc}{bc}+\frac{c^2+a^2-2ac}{ac}=0\)
\(\Leftrightarrow\) \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(c-b\right)^2}{bc}+\frac{\left(c-a\right)^2}{ac}=0\)
\(\Leftrightarrow\) \(a-b=c-b=c-a\) \(\Leftrightarrow\) \(a=b=c\)
Với \(a,b,c\) là \(3\) cạnh của \(\Delta ABC\) thì \(\Delta ABC\) đều