tính gia strij biểu thức a= (x+y).(x^2-xy+y^2 ) -2y^3
tại x = 2/3, y=1/3
tính giá trị biểu thức
a) A=x^2-y+xy^2 với x=-5,y=2
b) B=3x^3-2y^3-6x^2y^2+xy với x=2/3 , y=1/2
c) C= 2x+xy^2-x^y-2y với x=-1/2, y=-1/3
Bài 1: Tính giá trị biểu thức sau: a) B=3x^3-2y^3-6x^2y^2+xy tại x=2/3, y=1/2 b) C=2x+xy^2-x^2y-2y tại x=-1/2, y=-1/3
a)B=3x3 -2y3-6x2y2+xy
B=(3x3-6x2y2)+(xy-2y3)
B=3x2(x-2y2)+y(x-2y2)
B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)
b)C= 2x+xy2-x2y-2y
C=(2x-2y)+(xy2-x2y)
C=2(x-y)-xy(x-y)
C=(2-xy)(x-y)
tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)
tính giá trị của biểu thức sau
a,A=3x^3-2y^3-6x^2y^2+xy. với x=2/3;y=1/2
b,B= 2x+xy^2-x^2y-2y .với x=-1/2;y=-1/3
a, A=3.(2/3)^3-2.(1/2)^3-6.(2/3)^2.(1/2)^2+(2/3).(1/2)
=8/9-1/4-2/3+1/3=8/9-1/4-1/3=11/36
b, B=-1+(-1/18)+1/12+2/3=-11/36
Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4
= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)
= (x + y + 1)(x2 - y2) + 2(0 + 1)
= 0(x2 - y2) + 2.1
= 2
Vậy H = 2
Chúc bn học tốt!
rút gọn và tính gtri của biểu thức A=(x-y)(x^2+xy+y^2)+2y^3 tại x=2/3 và y=1/3
A = (\(x-y\)).(\(x^2\) + \(xy\) + y2) + 2y3
A = \(x^3\) - y3 + 2y3
A = \(x^3\) + y3
Thay \(x=\dfrac{2}{3}\); y = \(\dfrac{1}{3}\) vào biểu thức
A = \(x\)3 + y3 ta có:
A = (\(\dfrac{2}{3}\))3 + (\(\dfrac{1}{3}\))3
A = \(\dfrac{8}{27}\) + \(\dfrac{1}{27}\)
A = \(\dfrac{9}{27}\)
A = \(\dfrac{1}{3}\)
Tính giá trị của biểu thức
a) P=(xy+1) (x^2y^2-xy+1) tại x=5 và y=3/5
b) Q=(x^2y)(x^4y^2+x^2y+1) tại x=2 và y=1/2
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!
Bài 5: CMR ít nhất 1 trong 3 đa thức sau có gia strij dương với mọi x,y biết:
P=5x²y²-xy-2y³-y²+5x⁴
Q=-2x²y²-5xy+y³-3y²+2x⁴
R=-x²y²+6xy+y³+6y²+7
Bài 6: Cho đa thức P(x) =ax²+bx+c. Chứng tỏ rằngP(-1).P(-2)bé hơn hoặc bằng 0 biết rằng 5a-3b+2c=0
B6:
Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)
=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)
Mà theo đề bài \(5a-3b+2c=0\)
=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)
=> đpcm
B5:
Ta có:
P+Q+R
= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7
= x2y2+2y2+7x4+7
Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)
=> \(x^2y^2+2y^2+7x^4+7\ge7\)
=> Tổng 3 đa thức P,Q,R luôn dương
=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0
=> đpcm