Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran le thuy duong
Xem chi tiết
Chill Lofi
Xem chi tiết
cute panda
19 tháng 10 2020 lúc 21:02

a)B=3x-2y3-6x2y2+xy

   B=(3x3-6x2y2)+(xy-2y3)

   B=3x2(x-2y2)+y(x-2y2)

    B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)

b)C= 2x+xy2-x2y-2y

   C=(2x-2y)+(xy2-x2y)

   C=2(x-y)-xy(x-y)

   C=(2-xy)(x-y)

tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)

Khách vãng lai đã xóa
Lan Đào
Xem chi tiết
tam mai
12 tháng 7 2019 lúc 23:48

a, A=3.(2/3)^3-2.(1/2)^3-6.(2/3)^2.(1/2)^2+(2/3).(1/2)

      =8/9-1/4-2/3+1/3=8/9-1/4-1/3=11/36

b,  B=-1+(-1/18)+1/12+2/3=-11/36

Nhok Bé
Xem chi tiết
Trương Huy Hoàng
10 tháng 3 2021 lúc 23:02

Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4 

= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)

= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)

= (x + y + 1)(x2 - y2) + 2(0 + 1)

= 0(x2 - y2) + 2.1

= 2

Vậy H = 2

Chúc bn học tốt!

Nhok Bé
10 tháng 3 2021 lúc 22:36

Help mik lẹ với ;-;

Phạm Thị Hà
Xem chi tiết

A = (\(x-y\)).(\(x^2\) + \(xy\) + y2) + 2y3

A = \(x^3\) - y3 + 2y3

A = \(x^3\) + y3

Thay \(x=\dfrac{2}{3}\); y = \(\dfrac{1}{3}\) vào biểu thức

A = \(x\)3 +  y3 ta có:

A = (\(\dfrac{2}{3}\))3 + (\(\dfrac{1}{3}\))3

A = \(\dfrac{8}{27}\) + \(\dfrac{1}{27}\)

A = \(\dfrac{9}{27}\)

A = \(\dfrac{1}{3}\) 

 

 

loan cao thị
Xem chi tiết
dam quoc phú
Xem chi tiết
Zr_P114
23 tháng 12 2020 lúc 22:01

B) Ta có: 2x-2y-x2+2xy-y2

⇔ 2(x-y)-(x2-2xy+y2)

⇔ 2(x-y)-(x-y)2

⇔ (x-y)(2-x+y)

Đúng thì tick nhé

Nguyễn Thùy Linh
Xem chi tiết
Hồ Quốc Đạt
6 tháng 4 2017 lúc 11:47

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

Hồ Quốc Đạt
6 tháng 4 2017 lúc 11:49

Mà bài này hình như học ở lớp 7 rồi!lolang

Doan Nam Phuong Dung
Xem chi tiết
Ngô Chi Lan
26 tháng 8 2020 lúc 15:19

B6:

Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)

=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)

Mà theo đề bài \(5a-3b+2c=0\)

=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)

=> đpcm

Khách vãng lai đã xóa
Ngô Chi Lan
26 tháng 8 2020 lúc 15:25

B5:

Ta có:

P+Q+R

= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7

= x2y2+2y2+7x4+7

Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)

=> \(x^2y^2+2y^2+7x^4+7\ge7\)

=> Tổng 3 đa thức P,Q,R luôn dương

=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0

=> đpcm

Khách vãng lai đã xóa