A = \(\sqrt{2013}-\sqrt{2012}\)
B = \(\sqrt{2014}-\sqrt{2013}\)
So sánh A và B
A) SO SÁNH \(\sqrt{2013}-\sqrt{2010}\) và \(\sqrt{2012}-\sqrt{2011}\)
B) SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\)và \(\sqrt{2013}+\sqrt{2012}\)
A) SO SÁNH \(\sqrt{2013}-\sqrt{2010}\) và \(\sqrt{2012}-\sqrt{2011}\)
B) SO SÁNH\(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\)và \(\sqrt{2013}+\sqrt{2012}\)
THANKS
cho A và B hãy so sánh
\(A=\sqrt{2012}-\sqrt{2011};B=\sqrt{2013}-\sqrt{2012}\)
So sánh:
a) \(\sqrt{25}+\sqrt{45}\) và 12
b) \(\sqrt{2013}+\sqrt{2015}\) và \(2\sqrt{2014}\)
c) \(\sqrt{2014}-\sqrt{2013}\) và \(\sqrt{2013}-\sqrt{2012}\)
a) Có \(\sqrt{25}=5;\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{25}+\sqrt{45}< 5+7=12\)
Vậy \(\sqrt{25}+\sqrt{45}< 12.\)
b) có \(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013}.\sqrt{2015}\)\(=4028+2\sqrt{2013.2015}\)
\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2.2014=4028+2\sqrt{2014^2}\)
Xét \(2014^2-2013.2015=2014.\left(2013+1\right)-2013\left(2014+1\right)\)
\(=2013.2014+2014-2013.2014-2013=1>0\)
\(\Rightarrow2\sqrt{2013.2015}< 2\sqrt{2014^2}\)
Hay \(\left(\sqrt{2013}+\sqrt{2015}\right)^2< \left(2\sqrt{2014}\right)^2\)
\(\Rightarrow\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
Vậy \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}.\)
c) Có \(\left(\sqrt{2014}-\sqrt{2013}\right)\left(\sqrt{2014}+\sqrt{2013}\right)=2014-2013=1\)\(\rightarrow\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)
Mà \(\sqrt{2014}>\sqrt{2013};\sqrt{2013}>\sqrt{2012}\)
\(\rightarrow\sqrt{2014}+\sqrt{2013}>\sqrt{2013}+\sqrt{2012}\)
Hay \(\dfrac{1}{\sqrt{2014}+\sqrt{2013}}< \dfrac{1}{\sqrt{2013}+\sqrt{2012}}\)
Tương tự, ta có \(\dfrac{1}{\sqrt{2013}+\sqrt{2012}}=\sqrt{2013}-\sqrt{2012}\)
\(\Rightarrow\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}\)
Vậy \(\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}.\)
lop8. thi ap bdt nhu thanh song,
a)
VT=√25+√45<√2(25+45)=√140<√144=12=VP
b)
VT=√2013+√2015<√[2(2013+2015)]=√[4.2014]=2√(2014)=VP.
c) C=VT-VP
√2014+√2012-2√2012
kq(b)=> C<0
VT<VP
SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\) VÀ \(\sqrt{2013}+\sqrt{2012}\)
So sánh
\(\sqrt{2012}+\sqrt{2013}+\sqrt{2014}v\text{à}\sqrt{2009}+\sqrt{2011}+\sqrt{2019}\)
\(\sqrt{2015-\sqrt{2012}}\)so sánh với \(\sqrt{2014-\sqrt{2013}}\)
Cho \(A=\sqrt{2012}+\sqrt{2013}+\sqrt{2014}\)
\(B=\sqrt{2009}+\sqrt{2011}+\sqrt{2019}\)
So sánh A và B
SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\) VÀ \(\sqrt{2013}-\sqrt{2012}\)
MÌNH_ĐANG_CẦN
THANKS!!!!!!!!!!!!!!!!!!!!!!