Tìm x, biết
1. \(\frac{x}{3}=\frac{y}{4}\)và x+y = 14
2. \(\frac{x}{y}=\frac{y}{4}\)và x-y=30
tìm x , y , z biết
a) \(\frac{x}{2}=\frac{y}{5}\)và 3x - y = 10
b) \(\frac{x}{4}=\frac{y}{5}\)và x.y= 30
c) \(\frac{x}{4}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\)và 4x + y.z= 16
d) \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)và 3x - 2y + z = 105
a)
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)
Áp dụng tc của dãy tỉ só bằng nhau
\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)
=> x=2.10=20
y=5.10=50
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)
Mà 2;5 cùng dấu
=> x; y cùng dấu
Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)
a) Ta có: \(\frac{x}{2}\) = \(\frac{y}{5}\) và 3x-y = 10
=> \(\frac{3x}{6}\) = \(\frac{y}{5}\) và 3x-y = 10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}\) = \(\frac{y}{5}\) = \(\frac{3x-y}{6-5}\) = \(\frac{11}{1}\) = 11
=> x= \(\frac{11.6}{3}\) = 22
=> y= 11.5= 55
Vậy x= 22
y= 55
TÌM XY BIẾT
A,\(\frac{x}{4}=\frac{y}{7}\) và x.y = 142
B,\(\frac{x}{2}=\frac{y}{5}\) và x+y=-21
C, 7x = 3y và x-y = 16
D, \(\frac{x}{3}=\frac{y}{8}\) và x + y = -22
ai đúng tick
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)(1)
Sửa : xy = 112 (2)
Thay (1) vào (2) ta có
4k.7k = 112
=> 28k2 = 112
=> k2 = 4
=> k = \(\pm\)2
Khi k = 2 => x = 8 ; y = 14
Khi k = -2 => x = -8 ; y = -14
Vậy các cặp (x;y) thỏa mãn bài toán là (8;14) ; (-8;-14)
b) Có : a + b = -21
Ta có \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)(dãy tỉ số bằng nhau)
=> x = -6 ; y = - 15
c) Ta có x - y = 16
Lại có : \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)(dãy tỉ số bằng nhau)
=> x = -12 ; y = - 28
d) Ta có x + y = - 22
Lại có \(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=2\)
=> x = -6 ; y = -16
a. Sửa đề : x/4 = y/7 và x + y = 142
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{142}{11}\)
Suy ra :
+) \(\frac{x}{4}=\frac{142}{11}\Leftrightarrow x=\frac{568}{11}\)
+) \(\frac{y}{7}=\frac{142}{11}\Leftrightarrow y=\frac{994}{11}\)
b. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
Suy ra :
+) \(\frac{x}{2}=-3\Leftrightarrow x=-6\)
+) \(\frac{y}{5}=-3\Leftrightarrow y=-15\)
c. \(7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
Suy ra :
+) \(\frac{x}{3}=-4\Leftrightarrow x=-12\)
+) \(\frac{y}{7}=-4\Leftrightarrow y=-28\)
d. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=-2\)
Suy ra :
+) \(\frac{x}{3}=-2\Leftrightarrow x=-6\)
+) \(\frac{y}{8}=-2\Leftrightarrow y=-16\)
a) đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)
ta có \(x.y=142\)
\(\Leftrightarrow4k.7k=142\)
\(\Leftrightarrow k^228=142\)
số lỗi :>
b)
theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=-\frac{21}{7}=-3\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{5}=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{cases}}\)
c) \(7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)và x-y=16
theo tính chất dãy tỉ số bằng nhau có
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=-4\\\frac{y}{7}=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{cases}}\)
d) theo tính chất dãy tỉ số bằng nhau có
\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=-\frac{22}{11}=-2\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=-2\\\frac{y}{8}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.\left(-2\right)=-6\\y=8.\left(-2\right)=-16\end{cases}}\)
3) tìm x,y,z
a) \(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\) và -x - y + z = -10
b) \(\frac{x}{2}=\frac{y}{3};\frac{z}{5}=\frac{y}{7}\) và x +y + z = 92
c) \(\frac{x}{3}=\frac{y}{4};\frac{z}{5}=\frac{y}{7}\) và 2x + 3y -z = 186
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2-y^2+2z^2=108\)
e) 2x = 3y ; 5y = 7z và 3x - 7y + 5c = 30
f) 2x = 3y = 4z và x + y + z = 169
g*) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x - 2y + 3z = 14
h*) \(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\) và x +y + z = 48
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Tìm x, y, z biết
a/ x : y : z = 2 : 3 : (-4)
và x - y + z = -125
b/ \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)
và 3x - 2y + z = 4
c/ \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
và x + y + z =147
d/ \(2x=3y;5y=7z\)
và 3x - 7y + 5z = 30
a)Vì \(x:y:z=2:3:\left(-4\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+-4}=\frac{-125}{-5}=25\)
\(\Rightarrow\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{-4}=25\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=50\\y=75\\z=-100\end{cases}\)
Vậy x=50;y=75;z=-100
d)Vì 2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)(1)
5y=7z\(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{x}{21}=2\\\frac{y}{14}=2\\\frac{z}{10}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
Tìm x, y thuộc Z
a)\(\frac{x-4}{y-3}=\frac{4}{3}\)và x - y = 5
b)\(\frac{x}{2}=\frac{y}{3}\)và x + y = 10
c)\(\frac{x}{6}=\frac{y}{7}\)và x - y = 15
tìm x,y
a\(\frac{x}{2}=\frac{y}{-5}\)và x-y=35
b2.x=y.4 và x+4=30
Bài làm
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2+5}=\frac{35}{7}=5\)
Do đó: \(\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{-5}=5\end{cases}\Rightarrow\hept{\begin{cases}x=15\\y=-25\end{cases}}}\)
Vậy x = 15, y = -25
b) Ta thấy sai đề phần điều kiện x + ...
# Học tốt #
b, sửa lại là x+y =30
Ta có
\(2x=y4\Rightarrow\frac{x}{4}=\frac{y}{2}\)
Ap dụng tính chất DTSBN ta có
\(\frac{x}{4}=\frac{y}{2}=\frac{x+y}{4+20}=\frac{30}{6}=5\)
\(\hept{\begin{cases}\frac{x}{4}=5\\\frac{y}{2}=5\end{cases}\Rightarrow\hept{\begin{cases}x=20\\y=10\end{cases}}}\)
a \(\frac{x}{2}\)=\(\frac{y}{-5}\)và x-y=35
Áp dụng tính chất dãy tỉ số=nhau:\(\frac{x}{2}\)= \(\frac{y}{-5}\)=\(\frac{x-y}{2+5}\)=\(\frac{35}{7}\)=5
\(\hept{\begin{cases}x=10\\y=-25\end{cases}}\)
Tìm x, y, z biết:
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
b) \(\frac{x}{2}=\frac{y}{3};y:5=z:4\) và x - y + z = -49
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và x + 2y -3z = -20
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
Tìm x,y biết:
a) \(\frac{x}{4}=\frac{y}{5}\)và x+ y =4
b) \(\frac{x}{6}=\frac{y}{3}\)và x - 2y = 5
c) \(\frac{x}{3}=\frac{y}{7}\)và x - 5y = 4
d) \(\frac{x}{-4}=\frac{y}{7}\)và x -2x + 3y = -5
a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)
b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5
Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý
c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4
Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)
d, Tương tự áp dụng như bài a,c
Tìm x,y và z biết
1 .\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{4}\)và x+y+z=46
2.\(\frac{x}{3}=\frac{z}{4};\frac{y}{2}=\frac{z}{3}\)và x-y-z=33
3.\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và 2x+3y-4z=93
4 . \(\frac{x}{2}=\frac{y}{3};2y=3z\)và x+y+z=49
Đỗ Ngọc Hải nhưg ko bt cách lm ^^ đúng ko Miki Thảo
Làm cho câu 1 vậy, các câu sau tương tự
\(\frac{x}{2}=\frac{y}{3}\Rightarrow x=y.\frac{2}{3};\frac{y}{2}=\frac{z}{4}\Rightarrow z=y.2\)
=> x+y+z = \(y.\frac{2}{3}+y+y.2=46\)
\(y.\left(\frac{2}{3}+1+2\right)=46\)
\(y.3\frac{2}{3}=46\)
=> \(y=12\frac{6}{11}\)
=> \(x=12\frac{6}{11}.\frac{2}{3}=8\frac{4}{11}\)
=> \(z=12\frac{6}{11}.2=25\frac{1}{11}\)