Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hồng Nhung
Xem chi tiết
Tuấn Khang Bùi
Xem chi tiết
phan thuy nga
Xem chi tiết
Đặng Quỳnh Ngân
27 tháng 9 2016 lúc 17:20

a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5

GTNN A = 4,97

b) = (2x +y)2 + y2 + 2018

GTNN B = 2018 khi x=0;y=0

c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10

GTLN C = 169/16

d) = -(x-y)2 - (2x +1) +1 + 2016

GTLN D = 2017

(trg bn cho bài khó dữ z, làm hại cả não tui)

phan thuy nga
29 tháng 9 2016 lúc 14:39

cảm ơn nhiều lắm đấy

Nghĩa
Xem chi tiết
Lê Quynh Nga
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 12 2021 lúc 19:19

\(A\le\sqrt{3\left(x+y+y+z+z+x\right)}=\sqrt{6\left(x+y+z\right)}\le\sqrt{6.\sqrt{3\left(x^2+y^2+z^2\right)}}=\sqrt{6\sqrt{3}}\)

\(A_{max}=\sqrt{6\sqrt{3}}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

Do \(x^2+y^2+z^2=1\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow x+y+z\ge x^2+y^2+z^2=1\)

\(A^2=2\left(x+y+z\right)+2\sqrt{\left(x+y\right)\left(x+z\right)}+2\sqrt{\left(x+y\right)\left(y+z\right)}+2\sqrt{\left(y+z\right)\left(z+x\right)}\)

\(A^2=2\left(x+y+z\right)+2\sqrt{x^2+xy+yz+zx}+2\sqrt{y^2+xy+yz+zx}+2\sqrt{z^2+xy+yz+zx}\)

\(A^2\ge2\left(x+y+z\right)+2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=4\left(x+y+z\right)\ge4\)

\(\Rightarrow A\ge2\)

\(A_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

Phạm Hoai Vũ
Xem chi tiết
Mr Lazy
11 tháng 8 2015 lúc 8:14

\(\Rightarrow A\left(x^2+x+1\right)=x^2-x+1\)

\(\Leftrightarrow\left(A-1\right)x^2+\left(A+1\right)x+A-1=0\text{ (1)}\)

\(+\text{Nếu }A-1=0\Leftrightarrow A=1\text{ thì pt thành }2x=0\Leftrightarrow x=0\)

\(+\text{Xét }A-1\ne0\Leftrightarrow A\ne1\)

\(\text{Khi đó, xem (1) là một phương trình bậc 2 ẩn }x,\text{ tham số A. Để tồn tại }x\text{ thỏa }\left(1\right)\text{ thì }\)

\(\Delta=\left(A+1\right)^2-4\left(A-1\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow-3A^2+10A-3\ge0\)

\(\Leftrightarrow\left(A-3\right)\left(3A-1\right)\le0\)

\(\Leftrightarrow\frac{1}{3}\le A\le3\)

Vậy GTNN của A là 1/3.

GTLN của A là 3.

Lưu ý: Một cách trình bày khác dựa trên đáp án là kết quả ở trên (nếu coi phần trên chỉ là nháp!)

Ta có: \(A-\frac{1}{3}=\frac{x^2-x+1}{x^2+x+1}-\frac{1}{3}=\frac{2x^2-4x+2}{x^2+x+1}=\frac{2\left(x-1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\)

\(\Rightarrow A\ge\frac{1}{3}.\text{ Dấu "=" xảy ra khi }x=1.\)

Ta có: \(A-3=\frac{-2x^2-4x-2}{x^2+x+1}=-\frac{2\left(x+1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le0\)

\(\Rightarrow A\le3.\text{ Dấu "=" xảy ra khi }x=-1.\)

Tuy nhiên, cách này chỉ dùng được khi mẫu luôn dương. Còn cách xét Delta có thể dùng với mọi hàm dạng \(\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}\)

Mai Phương
Xem chi tiết
Võ Văn Nam
Xem chi tiết
pham thanh binh
6 tháng 8 2017 lúc 20:24

a,A=12

b,B=8

c,C=-3

Nguyễn Châm Anh
6 tháng 8 2017 lúc 20:33
A= (x^2-4x+4)+3 A= (x-2)^2>= 3 Vậy GTNN của A=3 <=> x=2 B=x^2+8x B=(x^2+8x+16)-16 B=(x+4)^2-16>= -16 Vậy GTNN của A=-16 <=> x--4 C=-2x^2+8x-15 C=-2(x^2-4x+15/2) C=-2(x^2-4x+4)+7/2 C=-2(x-2)^2+7/2 Vậy GTNN của C= 7/2 <=> x=2
Xem chi tiết
mo chi mo ni
4 tháng 7 2019 lúc 9:47

Lâu rồi không giải bài lớp 6 có gì sai sót xin bỏ qua hé!

1. a, để a+b lớn nhất thì a, b phải lớn nhất 

mà a,b là số nguyên có 4 chữ số nên a, b lớn nhất đều bằng 9999

suy ra a+b lớn nhất là 9999+9999=(tự tính)

b, tương tự trên nhưng a, b đều bằng -9999 (âm nha)

hai câu sau thì tự làm tìm giá trị a,b rồi cộng trừ theo đề.

2. số nguyên âm lớn nhất là -1

Mà  x+2019 là số nguyên âm lớn nhất  suy ra x+2019=-1

tiếp theo tự tính

3.hướng dẫn 

b, \(\left|x-28\right|+7=15\)

\(\Rightarrow\left|x-28\right|=8\)

\(\Rightarrow\orbr{\begin{cases}x-28=8\\x-28=-8\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=36\\x=30\end{cases}}\)

vậy.........................

4. hướng dẫn \(a.b=0\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

a.,,\(\left(x-4\right)\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+7=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-7\end{cases}}\)

Vậy....

b, \(\left(x-5\right)\left(x^2-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x^2=9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)

Vậy.....................

c,\(\left(x^2-7\right)\left(x^2-51\right)< 0\)

(đúng ra mk sẽ giải cách dễ hiểu hơn nhưng hơi rắc rối mà phần mềm này ko hiển thị hết được nên thôi nha)

Hướng dẫn: hai số nhân với nhau mà âm thì hai số đó trái dấu (tức là 1 âm 1 dương)

khi đó số lớn hơn sẽ dương mà số bé hơn sẽ âm

giải:

Ta có Vì \(\left(x^2-7\right)\left(x^2-51\right)< 0\) nên \(x^2-7\)và \(x^2-51\)trái dấu

Mà \(x^2-7\)\(>\)\(x^2-51\)nên \(\Rightarrow\hept{\begin{cases}x^2-7>0\\x^2-51< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^2>7\\x^2< 51\end{cases}}\)\(\Rightarrow7< x^2< 51\)

Mà \(x\inℤ\)nên \(x^2\)là số chính phương \(\Rightarrow x^2\in\left\{9;16;25;36;49\right\}\)

\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)

Làm tắt tí hi vọng bạn hiểu!