Tìm gia tri lớn nhất nhỏ nhất (x+1)^2+4
tim gia tri nhỏ nhất và lớn nhất của : (x-1)/x2
cho các số thực x, y ,z không âm thoả mãn : x2+y2+z2=1 . tìm giá tri nhỏ nhất và giá tri lớn nhất của P = √ (x^2 + y^2) + √(y^2 + z^2) + √ (z^2 + x^2)
tìm GTNN,GTLN của biểu thức sau
a)giá trị nhỏ nhất
A= 9x^2-x+5
b) Giá trị nhỏ nhất
B= 4x^2+2y^2+4xy+2018
c) gia tri lớn nhất
C= 3x-4x^2+10
d) giá trị lớn nhất
D= -5x^2-y^2+2xy-4x+2016
giúp mik với.GẤP LẮM Ạ
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
Cho số thực x, y thỏa mãn hệ thức: x^2+2xy+7x+7y+2y^2+10=0. Hãy tìm giá tri lớn nhất, nhỏ nhất của: S=x+y+1.
cho các số thực x, y ,z không âm thoả mãn : x2+y2+z2=1 .
Tìm giá tri nhỏ nhất và giá tri lớn nhất của \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(A\le\sqrt{3\left(x+y+y+z+z+x\right)}=\sqrt{6\left(x+y+z\right)}\le\sqrt{6.\sqrt{3\left(x^2+y^2+z^2\right)}}=\sqrt{6\sqrt{3}}\)
\(A_{max}=\sqrt{6\sqrt{3}}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Do \(x^2+y^2+z^2=1\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow x+y+z\ge x^2+y^2+z^2=1\)
\(A^2=2\left(x+y+z\right)+2\sqrt{\left(x+y\right)\left(x+z\right)}+2\sqrt{\left(x+y\right)\left(y+z\right)}+2\sqrt{\left(y+z\right)\left(z+x\right)}\)
\(A^2=2\left(x+y+z\right)+2\sqrt{x^2+xy+yz+zx}+2\sqrt{y^2+xy+yz+zx}+2\sqrt{z^2+xy+yz+zx}\)
\(A^2\ge2\left(x+y+z\right)+2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=4\left(x+y+z\right)\ge4\)
\(\Rightarrow A\ge2\)
\(A_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị
tìm gia trị lớn nhất , nhỏ nhất của A= x2-x+1/x2+x+1
\(\Rightarrow A\left(x^2+x+1\right)=x^2-x+1\)
\(\Leftrightarrow\left(A-1\right)x^2+\left(A+1\right)x+A-1=0\text{ (1)}\)
\(+\text{Nếu }A-1=0\Leftrightarrow A=1\text{ thì pt thành }2x=0\Leftrightarrow x=0\)
\(+\text{Xét }A-1\ne0\Leftrightarrow A\ne1\)
\(\text{Khi đó, xem (1) là một phương trình bậc 2 ẩn }x,\text{ tham số A. Để tồn tại }x\text{ thỏa }\left(1\right)\text{ thì }\)
\(\Delta=\left(A+1\right)^2-4\left(A-1\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow-3A^2+10A-3\ge0\)
\(\Leftrightarrow\left(A-3\right)\left(3A-1\right)\le0\)
\(\Leftrightarrow\frac{1}{3}\le A\le3\)
Vậy GTNN của A là 1/3.
GTLN của A là 3.
Lưu ý: Một cách trình bày khác dựa trên đáp án là kết quả ở trên (nếu coi phần trên chỉ là nháp!)
Ta có: \(A-\frac{1}{3}=\frac{x^2-x+1}{x^2+x+1}-\frac{1}{3}=\frac{2x^2-4x+2}{x^2+x+1}=\frac{2\left(x-1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\)
\(\Rightarrow A\ge\frac{1}{3}.\text{ Dấu "=" xảy ra khi }x=1.\)
Ta có: \(A-3=\frac{-2x^2-4x-2}{x^2+x+1}=-\frac{2\left(x+1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le0\)
\(\Rightarrow A\le3.\text{ Dấu "=" xảy ra khi }x=-1.\)
Tuy nhiên, cách này chỉ dùng được khi mẫu luôn dương. Còn cách xét Delta có thể dùng với mọi hàm dạng \(\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}\)
Tìm giá tri lớn nhất, nhỏ nhất của: P=\(\frac{6x+11}{x^2-2x+3}\)
Tìm giá trị lớn nhất hay giá tri nhỏ nhất cua cac bieu thức sau:
a.A=x^2-4x+7
b.B=x^2+8x
c.C=-2x^2+8x-15
1.Cho a,b là các số nguyên có 4 chữ số
a/Tìm gia trị lớn nhất của a+b
b/Tìm giá trị nhỏ nhất a+b
c/ Tìm tổng a+b biết a là số nguyên lớn nhất,b là số nguyên nhỏ nhất
d/ tìm hiệu a-b biết a là số nguyên lớn nhất ,b là số nguyên nhỏ nhất
2.Tìm số nguyên x sao cho x+2019 là số nguyên âm lớn nhất
3. Tìm x thuộc tập hợp số nguyên biết
a/ |x|-14=(-15)-(-27)
b/ |x-28|+7=15
4. Tìm x thuộc tập hợp số nguyên biết
a/(x-4).(x+7)=0
b/(x-5).(x mũ 2 -9)=0
c/(x mũ 2 -7).(x mũ 2 -51)<0
Lâu rồi không giải bài lớp 6 có gì sai sót xin bỏ qua hé!
1. a, để a+b lớn nhất thì a, b phải lớn nhất
mà a,b là số nguyên có 4 chữ số nên a, b lớn nhất đều bằng 9999
suy ra a+b lớn nhất là 9999+9999=(tự tính)
b, tương tự trên nhưng a, b đều bằng -9999 (âm nha)
hai câu sau thì tự làm tìm giá trị a,b rồi cộng trừ theo đề.
2. số nguyên âm lớn nhất là -1
Mà x+2019 là số nguyên âm lớn nhất suy ra x+2019=-1
tiếp theo tự tính
3.hướng dẫn
b, \(\left|x-28\right|+7=15\)
\(\Rightarrow\left|x-28\right|=8\)
\(\Rightarrow\orbr{\begin{cases}x-28=8\\x-28=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=36\\x=30\end{cases}}\)
vậy.........................
4. hướng dẫn \(a.b=0\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
a.,,\(\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+7=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-7\end{cases}}\)
Vậy....
b, \(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x^2=9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
Vậy.....................
c,\(\left(x^2-7\right)\left(x^2-51\right)< 0\)
(đúng ra mk sẽ giải cách dễ hiểu hơn nhưng hơi rắc rối mà phần mềm này ko hiển thị hết được nên thôi nha)
Hướng dẫn: hai số nhân với nhau mà âm thì hai số đó trái dấu (tức là 1 âm 1 dương)
khi đó số lớn hơn sẽ dương mà số bé hơn sẽ âm
giải:
Ta có Vì \(\left(x^2-7\right)\left(x^2-51\right)< 0\) nên \(x^2-7\)và \(x^2-51\)trái dấu
Mà \(x^2-7\)\(>\)\(x^2-51\)nên \(\Rightarrow\hept{\begin{cases}x^2-7>0\\x^2-51< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2>7\\x^2< 51\end{cases}}\)\(\Rightarrow7< x^2< 51\)
Mà \(x\inℤ\)nên \(x^2\)là số chính phương \(\Rightarrow x^2\in\left\{9;16;25;36;49\right\}\)
\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)
Làm tắt tí hi vọng bạn hiểu!