Chứng minh rằng nếu có sớ A mà tổng các số A=tổng các chữ số của 2A thì A chia hết cho 9
Tổng các chữ số của số tự nhiên a được kí hiệu là S(a). Chứng minh rằng nếu S(a)=S(2a) thì a chia hết cho 9.
Tổng các chữ số của số tự nhiên a kí hiệu S(a). Chứng tỏ rằng nếu S(a) = S(2a) thì a chia hết cho 9
Lời giải:
Ta thấy với $a$ là số tự nhiên bất kỳ thì $a$ và $S(a)$ luôn có cùng số dư khi chia cho 9 nên:
$a-S(a)\vdots 9$
Tương tự với số tự nhiên $2a$ cũng vậy, $2a-S(2a)\vdots 9$
Suy ra:
$(2a-S(2a))-(a-S(a))\vdots 9$
Hay $a-(S(2a)-S(a))\vdots 9$
Hay $a\vdots 9$
Hai số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng a chia hết cho 9.
Hai số tự nhiên a và 2a đều có tổng các chữ số là k.hãy chứng minh rằng a chia hết cho 9
Lời giải:
Một số tự nhiên có cùng số dư khi chia cho 9 với tổng các chữ số của nó. Tức là:
$a-S(a)\vdots 9$
$2a-S(2a)\vdots 9$
$\Rightarrow a-k\vdots 9; 2a-k\vdots 9$
$\Rightarrow (2a-k)-(a-k)\vdots 9$
$\Rightarrow a\vdots 9$
Cho 2 số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng: a chia hết cho 9
đề ra mập mờ quá
a và 2a
thế 2a là 2.a hay là 2a nói chung hiểu kiểu gì cũng sai
không tồn tại
người ra đề thử tìm hộ tôi một số a cụ thể nào thỏa mãn đề bài xem nào?
sau đó mới nâng cấp lên tổng quát.
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9
#ngonhuminh nói đúng đó
tổng các chữ số của số tự nhiên a kí hiệu là S(a). Chứng tỏ rằng S(a)=S(2a) thì a chia hết cho 9
2a và a có tổng các chữ số bằng nhau
2a; a có cùng số dư với tổng các chữ số của chúng khi chia cho 9
=> (2a - a) chia hết cho 9
=> a chia hết cho 9
Tổng các chữ số của số tự nhiên a kí hiệu là S(a).Chứng minh rằngS(a)=S(2a) thì a chia hết cho 9.
Giả sử S(a) là tổng các chữ số của số tự nhiên a. CMR:
a. a - S(a) chia hết cho 9.
b. Nếu S(a) = S(2a) thì a chia hết cho 9. Điều ngược lại có đúng không?
Ai giải được thì tớ tặng 100000000000000000000000000000000000000000000000000000 tick
Hai số tự nhiên a và 2a đều có tổng các chữ số bằng chữ số k.Chứng minh rằng a chia hết cho 9.
Giải:
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9,do đó hiệu của chúng chia hết cho 9.
Như vậy:2a-k chia hết cho 9
và a-k chia hết cho 9
Suy ra : (2a-k)-(a-k) chia hết cho 9
Do đó : a chia hết cho 9